Expressivity of first-order logic,
star-free propositional dynamic logic

and communicating automata

Marie Fortin

PhD Defense — November 27, 2020

LSV, ENS Paris-Saclay, Université Paris-Saclay

Introduction

System
Requirements
S,

_ System
equirements
S,

v
Formal specification ¢ System model A

~(3z.error(z)) M

— System
equirements
S,

v
Formal specification ¢ System model A

—(Jz.error(z)) 4>©<>8
k Model-checking)
¥

AE p?

_ System
equirements
S,

Formal specification ¢ Synthesis System model A

~(3z.error(z)) M

Specification: many choices!

Example: “every request is eventually granted”

Specification: many choices!

Example: “every request is eventually granted”

G(request = Fgrant)
Linear temporal logic (LTL)

Specification: many choices!

Example: “every request is eventually granted”

G(request = Fgrant)
Linear temporal logic (LTL)

Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression

Vx.(request(z) == 3Jy.x <y Agrant(y))
First-order logic (FO)

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power

e Complexity/Decidability

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power e Succinctness

e Complexity/Decidability

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power e Succinctness

e Complexity/Decidability e Convenience

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power e Succinctness

e Complexity/Decidability e Convenience

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power e Succinctness

e Complexity/Decidability e Convenience

Comparisons with automata

Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power e Succinctness

e Complexity/Decidability e Convenience

Comparisons with automata
Given a specification, can we always construct an equivalent
automaton? 3

Some expressivity results over finite words

Some expressivity results over finite words

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
Finite automata and MSO have the same expressive power.

Some expressivity results over finite words

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<]| defines the same class of languages as

o LTL [Kamp 1968]
e FO’[<] [Kamp 1968]
e Star-free expressions [McNaughton, Papert 1971]
e Counter-free automata [McNaughton, Papert 1971]

Aperiodic monoids [Schiitzenberger 1965]

Some expressivity results over finite words

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]

Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<]| defines the same class of languages as

o LTL [Kamp 1968]
o FO’[<] [Kamp 1968]
e Star-free expressions [McNaughton, Papert 1971]
e Counter-free automata [McNaughton, Papert 1971]
e Aperiodic monoids [Schiitzenberger 1965]

What about more complex structures?

Outline

Logic-automata connections

Logic-automata connections

Communicatin
EMSO s
automata

Logic-automata connections

Communicatin
EMSO s
automata

The 3-variable property

Outline

Logic-automata connections

Communicatin
EMSO s
automata

over interval-preserving

_—Structures~
FO FO?

_/

The 3-variable property

Logic-automata connections

Communicatin
EMSO s
automata

N

Star-free

PDL
ﬂr 'ntervalpreserv'n}
FO

structures
FO3

_/

The 3-variable property

Logic-automata connections

Communicating

EMSO
automata
\ Star-free / Part |
PDL Star-free PDL
ﬂr 'ntervalpreserv'n}
structures
FO FO?

_/

The 3-variable property

Logic-automata connections

Communicating iRantatl
EMSO —— t A Biichi theorem for

\ / message-passing systems

Star-free Part |

PDL Star-free PDL

ﬂr 'ntervalpreserv'n}

structures

FO FO?

_/

The 3-variable property

Logic-automata connections

Communicating iRantatl
EMSO —— + A Biichi theorem for
\ / message-passing systems
Star-free Part |

Star-free PDL

PDL
ﬂr 'ntervalpreserv'n} Part 111
FO

structures FO3 + Sufficient conditions for
_/ the 3-variable property

The 3-variable property

Star-free PDL

b, q

e Binary relations — and —

e Unary predicates p, ¢

p
e pV{=)g \q

b, q

e Binary relations — and —

e Unary predicates p, ¢

p []
® pV{()q //,q\
. p

P, q

e Binary relations — and —

e Unary predicates p, ¢

p
e pV{=)g \q

b, q

e Binary relations — and —

e Unary predicates p, ¢

p []
o

® pV{()q

q
o (- —="H(PpVa) </\
p

b, q

e Binary relations — and —

e Unary predicates p, ¢

p []
o

q
v

o (= ="HVva {/\

p

b, q

e Binary relations — and —

e Unary predicates p, ¢

(—)q
Ve
{p}?- =71
N () q

b, q

e Binary relations — and —

e Unary predicates p, ¢

Example: MTL modalities

Over structures with
e domain R
e binary relations < and +¢ for every g € Q.
e atomic propositions P, Q), . ..

Example: MTL modalities

Over structures with
e domain R
e binary relations < and +¢ for every g € Q.
e atomic propositions P, Q), . ..

eUgn ¥ =

t t+q t+r
L J

Example: MTL modalities

Over structures with
e domain R
e binary relations < and +¢ for every g € Q.
e atomic propositions P, Q), . ..

o Ugn v = (IR N[BT N (< {-0}?- <)) ¥

Syntax of Star-free Propositional Dynamic Logic

State formulas:
pu=pleVe|-p|(r)e
Path formulas:
7= R|{p}? 71|

PDLgs

Syntax of Star-free Propositional Dynamic Logic

State formulas:
pu=pleVe|-p|(r)e
Path formulas:
7= R|{p}? 71|

PDLgs

Combines features from
e Propositional Dynamic Logic [Fisher, Ladner 1979]
e Star-free regular expressions

e The calculus of relations

Syntax of Star-free Propositional Dynamic Logic

State formulas:
pu=pleVe|-p|(r)e
Path formulas:
7= R|{p}? 71|

PDLgs

Combines features from
e Propositional Dynamic Logic [Fisher, Ladner 1979]
e Star-free regular expressions
e The calculus of relations
Theorem [Tarski, Givant 1987] (calculus of relations)

PDL and FO? are expressively equivalent.

Logic-automata connections

EMSO Communicating

\

Sta r—free

ér interval-preserving

structures

\/

The 3-variable property

automata

/\

FO?

Part 11
+ A Biichi theorem for

message-passing systems

Part |
Star-free PDL

Part 111
+ Sufficient conditions for

the 3-variable property

A Buchi theorem for

message-passing systems

Communicating finite-state machines (CFMs)!

K |

![Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)!

Fixed, finite set of processes, e.g. {p,q,r}

K |

![Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)!

Fixed, finite set of processes, e.g. {p,q,r}

K |

Reliable unbounded
point-to-point
FIFO channels

![Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)!

Fixed, finite set of processes, e.g. {p,q,r}
One finite automaton
for each process

p a, = r a, 7pa
éoa,!rg — éoa, 7,4 e Finite input alphabet,
b.lq I b, 7y eg. X ={a,b,c}
b1, b, %,

e Sends/receives from a

finite message alphabet,

q ¢, 754)
Reliable unbounded
c, !M G !7' point-to-point

FIFO channels

![Brand, Zafiropulo 1983] 9

Communicating finite-state machines (CFMs)!

Fixed, finite set of processes, e.g. {p,q,r}
One finite automaton
for each process

p a, = r a, 7pa
éoa,!rg — éoa, 7,4 e Finite input alphabet,
b.lq I b, 7y eg. X ={a,b,c}
b1, b, %,

e Sends/receives from a

finite message alphabet,

q ¢, 754)
Reliable unbounded
c, !ﬂ c,', point-to-point

Global acceptance condition FIFO channels

![Brand, Zafiropulo 1983] 9

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

10

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

D a—ad—C—a—a—a0—a—>0a
q a—a— 00— a— 00— 00— 00— a0—>a0—0a
'S a%b—>b—>a4>ai>ci>a*>a—>a

Partial order consisting of

e One sequence of events for each process

10

Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

Partial order consisting of
e One sequence of events for each process

e Message relation connecting matching sends and receives

10

Monadic Second-Order logic (MSQO) over MSCs

P =
D a—aQ—>C—>0—0—>0—> 08— Q
q a—a—a—a CLHGH(ZHG+(IH(Z
'S (I;»b*)b—»a—>a*>64>a*>a*>a

11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x

11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x

| T —Y Process successor

aGa—Q—>C——>0—2a0—>a—a—>0a

] T

11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x
|z —y Process successor
|z <y message relation

p — —C— 00— a0—>aQ—>aq——>Q

11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x
|z —y Process successor
|z <y message relation
|z <y happened-before [Lamport 1978]

p a—0G—>C—a—>0—>0—>0———Q

N T

11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x
|z —y Process successor
|z <y message relation
|z <y happened-before [Lamport 1978]

| leVe|Ir. o|IX. plzeX

aGa—Q—>C—a—2a—>a—>a—>0a

] T

11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x
|z —y Process successor
|z <y message relation
|z <y happened-before [Lamport 1978]

| leVe|Ir. o|IX. plzeX

aGa—Q—>C—a—2a—>a—>a—>0a

] T

—a0—a—a a—a—a—a —

T T

'S (l;»b*)b—»a—>a*>64>a*>

q
—a

Example: mutual exclusion =(3z. Jy. c(x) Ac(y) A z ||y)
11

Monadic Second-Order logic (MSQO) over MSCs

e = a(z)|p(z) label /process of event x
|z —y Process successor
|z <y message relation
|z <y happened-before [Lamport 1978]

| leVe|Ir. o|IX. plzeX

aGa—Q—>C—a—>a—>a—>a—>a

] T

—a0—a—a a—a—a—a —

T BN

'S (l%b%b—»@—)@%C—»@ﬂ

q
—a

Example: mutual exclusion =(3z. Jy. c(x) Ac(y) A z ||y)
11

Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
If there is only one process,
CFMs (= finite automata) = MSO[<, <].

12

Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
If there is only one process,
CFMs (= finite automata) = MSO[<, <].

With > 2 processes,)
[Bollig, Leucker 2006]

12

Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
If there is only one process,
CFMs (= finite automata) = MSO[<, <].

With > 2 processes,

But: [Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]
Over finite MSCs, CFM = EMSO[«, —].

12

Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
If there is only one process,
CFMs (= finite automata) = MSO[<, <].

With > 2 processes,

But: [Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]
Over finite MSCs, CFM = EMSO[<«, —].

31Xy ...3X,.¢ with ¢ € FO[<, —]

12

Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]

If there is only one process,
CFMs (= finite automata) = MSO[<, <].

With > 2 processes,

But: [Bollig, Leucker 2006]

Theorem [Bollig, Leucker 2006]
Over finite MSCs, CFM = EMSO[«, —].

Theorem [Bollig, Kuske 2008]
Over infinite MSCs, CFM = EMSO*[«, —].

12

Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
If there is only one process,

CFMs (= finite automata) = MSO[<, <].

With > 2 processes,)

= [Bollig, Leucker 2006]
Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[«, —].

Theorem [Bollig, Kuske 2008]
Over infinite MSCs, CFM = EMSO*[«, —].

Note: here the happened-before relation < is

— Harder to formalize concurrency properties such as mutual exclusion.

Expressive power of CFMs

The equivalence with MSO[<, <] is recovered if we assume
that the channels are of

Theorem
CFM = MSO[<«, <] over
e finite, universally bounded MSCs
[Henriksen,Mukund,Narayan Kumar,Sohoni, Thiagarajan 2005]
e infinite, universally bounded MSCs [Kuske 2003]

e finite, existentially bounded MSCs
[Genest, Kuske, Muscholl 2006]

13

Expressive power of CFMs

The equivalence with MSO[<, <] is recovered if we assume
that the channels are of

Theorem
CFM = MSO[<«, <] over
e finite, universally bounded MSCs
[Henriksen,Mukund,Narayan Kumar,Sohoni, Thiagarajan 2005]
e infinite, universally bounded MSCs [Kuske 2003]

e finite, existentially bounded MSCs
[Genest, Kuske, Muscholl 2006]

Remark: model-checking is undecidable in general, but
decidable when restricted to bounded MSCs.

13

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

14

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]
Over finite and infinite MSCs, CFM = EMSO[«, <].

14

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]
Over finite and infinite MSCs, CFM = EMSO[«, <].

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig,F.,Gastin 2020]
Over finite and infinite existentially bounded MSCs,
CFM = MSO[«, <].

14

Expressive power of CFMs

What happens for formulas with the happened-before relation,

over unbounded channels?

Theorem [Bollig,F.,Gastin 2018 & 2020]
Over finite and infinite MSCs, CFM = EMSO[«, <].

Other consequence: new, direct proof for the bounded case:

Theorem [Bollig,F.,Gastin 2020]
Over finite and infinite existentially bounded MSCs,
CFM = MSO[«, <].

14

Some proof ideas

Remarks

ii5)

Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

ii5)

Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

e EMSO|«, <] C CFM follows from FO[<1, <] C CFM and
closure under projection

ii5)

Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

e EMSO|«, <] C CFM follows from FO[<1, <] C CFM and
closure under projection

e FO[«, <] = FO[«, <proc]

ii5)

Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

e EMSO|«, <] C CFM follows from FO[<1, <] C CFM and
closure under projection

e FO[«, <] = FO[«, <proc]

Goal: FO[<, <,roc] € CFM

ii5)

Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

e EMSO|«, <] C CFM follows from FO[<1, <] C CFM and
closure under projection

* FO[<]7 S] - FO[<]7 Sproc]
Goal: FO[<, <,roc] € CFM

Difficulty: CFMs are not closed under complement.

ii5)

Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

e EMSO|«, <] C CFM follows from FO[<1, <] C CFM and
closure under projection

* FO[<]7 S] - FO[<]7 Sproc]
Goal: FO[<, <,roc] € CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

ii5)

A fragment of PDL without explicit complements

State formulas:
pu=PlpleVel-p|(me
Path formulas:
To=—| <, | {e}? |7t 77w 7UT | 7°

16

A fragment of PDL without explicit complements

State formulas:
pu=PlpleVe|-p|{m)e

Path formulas:

m = | g | {0} |7 | | T | K

16

A fragment of PDL without explicit complements

State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)

Path formulas:

m = | g | {0} |7 | | T | K

16

A fragment of PDL without explicit complements

State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)

Path formulas:

o= | g [{07 77 e | e | T |5

16

A fragment of PDL without explicit complements

State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)
Path formulas:

o= | g [{07 77 e | e | T |5

e Loop(m): e € [Loop(n)] if (e, e) € [n]

16

A fragment of PDL without explicit complements

State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)

Path formulas:
mo=— | g [{e}? a7t 7w | e | K| T |5

e Loop(m): e € [Loop(n)] if (e, e) € [n]
e | is the universal relation

16

A fragment of PDL without explicit complements

State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)
Path formulas:

o= | g [{07 77 e | e | T |5

e Loop(m): e € [Loop(n)] if (e, e) € [n]

e | is the universal relation

e > similar to Until ._)8.0_)8.0 L.

16

A fragment of PDL without explicit complements

PDL[%, Loop]
State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)

Path formulas:
mo=— | g [{e}? a7t 7w | e | K| T |5

e Loop(m): e € [Loop(n)] if (e, e) € [n]

e | is the universal relation

e > similar to Until ._)8.0_)8.0 L.

16

A fragment of PDL without explicit complements

PDLSf[i>, Loop]
State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)

Path formulas:
mo=— | g [{e}? a7t 7w | e | K| T |5

e Loop(m): e € [Loop(n)] if (e, e) € [n]

e | is the universal relation

e > similar to Until ._)8.0_)8.0 L,

Negation occurs only at the level of state formulas (as in LTL)

16

Translation from first-order logic to CFMs

¢ € FO[<, <]

CFM A with L(A) = L(yp)

17

Translation from first-order logic to CFMs

¢ € FO[«, <]

translation into star-free PDL
(non-elementary)

¢' € PDLg[%, Loop] with ¢ = ¢/

CFM A with L(A) = L(yp)

17

Translation from first-order logic to CFMs

¢ € FO[«, <]

translation into star-free PDL
(non-elementary)

¢' € PDLg[%, Loop] with ¢ = ¢/

removal of Loop formulas
(PTIME)

¢" € PDLg[S] with ¢ = ¢ up to projection

CFM A with L(A) = L(yp)

17

Translation from first-order logic to CFMs

¢ € FO[«, <]

translation into star-free PDL
(non-elementary)

¢' € PDLg[%, Loop] with ¢ = ¢/

removal of Loop formulas
(PTIME)

¢" € PDLg[S] with ¢ = ¢ up to projection

A

similar to LTL — finite automata
(PspPACE)

CFM A with L(A) = L(yp)

17

Translation from first-order logic to CFMs

¢ =3X;...3X,.¢
¢ € FO[<, <] e EMSO[«, <]

translation into star-free PDL
(non-elementary)

¢' € PDLg[%, Loop] with ¢ = ¢/

removal of Loop formulas
(PTIME)

¢" € PDLg[S] with ¢ = ¢ up to projection

similar to LTL — finite automata

(PspPACE)
\

CFM A with L(A) = L(p) <-======n--=-)

projection

17

Logic-automata connections

EMSO Communicating

\

Sta r—free

ér interval-preserving

structures

\/

The 3-variable property

automata

/\

FO?

Part 11
+ A Biichi theorem for

message-passing systems

Part |
Star-free PDL

Part 111
+ Sufficient conditions for

the 3-variable property

The 3-variable property for

interval-preserving structures

Theorem

Over MSCs, FO and PDLg; have the same expressive power.

18

Theorem

Over MSCs, FO and PDLg; have the same expressive power.

Theorem

PDL and FO? have the same expressive power.

18

Theorem

Over MSCs, FO and PDLg; have the same expressive power.

Theorem

PDLs and FO? have the same expressive power.

\

formulas with at
most 3 variables

18

Theorem

Over MSCs, FO and PDLg; have the same expressive power.

Theorem

PDLs and FO? have the same expressive power.

\

formulas with at
most 3 variables

— MSCs have the 3-variable property.

18

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
& \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
A L] °® //

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
& \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
\\\ L] °® //

e For some classes of models, the hierarchy collapses:

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
- . \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
A L] °® //

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
- . \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
A L] °® //

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
- . \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
A L] °® //

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
- . \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
A L] °® //

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
- . \
y '1;5 ° ° L y
o 7P . A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
A L] °® //

19

The k-variable property

e Over arbitrary structures, strict hierarchy

FO' C FO* C FO’ C FO* C - --

,——'—’ 9o
- . \
1/ '1;5 ® ° o /1
e -) A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty .)
e T4 4
\ ° [) //

Over linear orders, FO = FO?. "

Over words, Over linear orders,
FO=FO® | v/ FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

20

Over words, Over linear orders,
FO=FO® | v/ FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

What happens if we have additional binary relations?

20

Over words, Over linear orders,
FO=FO® | v/ FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
Vk, FO # FO* X
[Rossman’08]

20

Over words, Over linear orders,
FO=FO® | v/ FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
Vk, FO # FO* X
[Rossman’08]

Over MSCs,
FO=FO® |v
[Bollig-F.-Gastin'18]

20

Over words,
FO =FO* | v
[Kamp’68]

Over linear orders,
FO = FO? 7

[Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs,
Vk, FO # FO*
[Rossman’08]

Over MSCs,
FO=FO® |v
[Bollig-F.-Gastin'18]

Over Mazurkiewicz traces,
FO = FO?
[Gastin-Mukund'02]

20

Over words, Over linear orders,
FO=FO* | v FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs, Over (R, <, +1),
Vk, FO # FO* X FO = FO? v
[Rossman’'08] [AHRW'15]
Over MSCs, Over Mazurkiewicz traces,
FO=F0O* |v FO = FO? v
[Bollig-F.-Gastin'18] [Gastin-Mukund'02]

20

Over words, Over linear orders,
FO=FO* | v FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs, Over (R, <, +1),
Vk, FO # FO* X FO = FO? v
[Rossman’'08] [AHRW'15]
Over MSCs, Over Mazurkiewicz traces,
FO=F0O* |v FO = FO?
[Bollig-F.-Gastin'18] [Gastin-Mukund'02]

What do the positive results have in common?

20

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications

21

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...

21

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...
2. (R, <, +1), (R, <, (+9)gen) - - -

21

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...
2- (Ra S; +1)1 (Rv Sa (+Q>q€(@) 000D
3. (R, <) + polynomial functions

21

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...
2. (Ra <, +1)' (Rv <, (+Q>q€@) e
3. (R, <) + polynomial functions
4. MSCs

21

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with

e one linear order <

e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications

e -

. Linear orders: finite or infinite words, R, Q, ordinals...

(R, <, +1), (R, <, (+9)geq) - - -

(R, <) + polynomial functions

MSCs

Mazurkiewicz traces, pomsets without auto-concurrency

21

Application to MSCs

22

Application to MSCs

| |

r G——h—ph—a—a—>C—a—a0—0a

e Process order <.

e Message relations <, ,

22

Application to MSCs

e Process order <.

e Message relations <, ,

22

Application to MSCs

| |

r G——h—ph—a—a—>C—a—a0—0a

e Process order <.

e Message relations <1, ,

22

Application to MSCs

e Process order <, can be extended to a linear order C

e Message relations <, ,

22

Application to MSCs

| |

r G——h—ph—a—a—>C—a—a0—0a

e Process order <, can be extended to a linear order C

e Message relations <, , FIFO — monotone

22

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

23

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
° binary relations Ry, Ro, . ..

e arbitrary unary predicates p,q, . ..

23

Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
° binary relations Ry, Ro, . ..

e arbitrary unary predicates p,q, . ..

Applications

. Linear orders with partial monotone functions

Linear orders: finite or infinite words, R, Q, ordinals...

(R, <,+1), (R, <, (+0)qeq) ---

(R, <) + polynomial functions

MSCs

Mazurkiewicz traces, pomsets without auto-concurrency 53

o0 AW

How does the interval-preserving assumption help?

24

How does the interval-preserving assumption help?

(21, 22, x3) = Jy. A Ry(w2,y) A Rg(xs,y)

4i))
Yy

‘R%
N

xs3

24

How does the interval-preserving assumption help?

(21, 22, x3) = Jy. A Ry(w2,y) A Rg(xs,y)

T2
Y

‘R%
N

xs3

Equivalent FO? formula?

24

How does the interval-preserving assumption help?

o(x1, 2, 23) = Jy. Ri(21,y) A Ro(z2,y) A Rs(x3,y)

‘ Equivalent FO? formula? ’

24

How does the interval-preserving assumption help?

o(x1, 2, 23) = Jy. Ri(21,y) A Ro(z2,y) A Rs(x3,y)

‘ Equivalent FO? formula? ’

24

How does the interval-preserving assumption help?

o(x1, 2, 23) = Jy. Ri(21,y) A Ro(z2,y) A Rs(x3,y)

(Hy fl(r1,Y) /\Rz(”I’g,)/\ >/\
<3y.171(,1-|.//> A Rs(z3,9) A) A
(E'y.RQ(Jz,)/\RQ(ﬂfg,)/\ >
R3(x3)
Ry (x2) Y

‘ Equivalent FO? formula? ’

24

How does the interval-preserving assumption help?

o(x1, 22, 3) = Fy. Ri(21,y) A Ra(w2,y) A Rs(xs,y)
(Ely Ri(z1,y) A Rao(x2,y) A Jz. R3 x,y))

(
Jy. Ri(z1,y) A Rs(z3,y) A Jz. Rg(x,y)>
(

/N 7 N
LLI
<
ny
)
—~
=
LV

y) A\ Ra(x3,y) A 3x. Ry x,y))

R3(x3)

Ra(x2) Yy

‘ Equivalent FO? formula? ’

24

How does the interval-preserving assumption help?

o(x1, T2, x3) = Jy. Ri(x1,y) A Ra(x2,y) A Rs(xs,y)
= (Elx;;. Ry (1, x3) A Ro(xo, x3) A 3x1. R3(21, X3)

(
(

) A
31'2. 11)1 (.I'] , L) N Rs(l’d, .’132) A ElfL'l. Rg(l'l,l'g)) A\
E'Il. RQ([L’Q, 11) A RQ(LEg, Il) VAN E'.IQ. Rl(l’g, $1)>

R3(x3)

Ra(x2) Yy

‘ Equivalent FO? formula? ’

24

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLy = FO3.

25

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLy = FO3.
Invariant: use only interval-preserving relations

25

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLy = FO3.

Invariant: use only interval-preserving relations

State formulas:

=PleVe|

¥ e Ve lwl[{me PDL.,
Path formulas:

ni=<|R|{p}? |7t |m-7|7UT |7
Ti=<|R|{p}? |7t |7-7w |77

’ \C | \C int
(< m- <) (Km-2>) | PDL

7<) (=7->)

25

Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLy = FO3.

Invariant: use only interval-preserving relations

State formulas:

=PleVe|

¥ e Ve lwl[{me PDL.,
Path formulas:

ni=<|R|{p}? |7t |m-7|7UT |7
Ti=<|R|{p}? |7t |7-7w |77

’ \C | \C int
(-7 (S m->)° | PDLs

7 (=m>)

Lemma: V7 € PDLY, [x] is interval-preserving.
25

Equivalences over interval-preserving structures

FO ———> PDL™

T l

FO? «——— PDLy

26

Equivalences over interval-preserving structures

FO ———> PDL™

def.T ldef.

FO? <——— PDLy

26

Equivalences over interval-preserving structures

FO =——> PDLY

def.T ldef.

FO? <«——— PDLy
trivial
induction

e State formula ¢ € PDLy ~ ¢f9(z) € FO
e Path formula 7w € PDLy¢ ~ 7f%(x,y) € FO

26

Equivalences over interval-preserving structures

? .
FO =———> PDLY

def.T ldef.

FO? <«——— PDLy
trivial
induction

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Atomic formulas, disjunction: easy

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Negation: Express 7 using
(£-m- <5 (m-2) (279 (20m-2)%

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Existential quantification: Similar to the example before.

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Existential quantification: Similar to the example before.
Jz. A\, 75O(z;,)

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Existential quantification: Similar to the example before.

FO
dz. N\, 72 (@i,)
N -~ 7
intersection of n intervals

26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Existential quantification: Similar to the example before.

FO
dz. N\, 72 (@i,)
N -~ 7
intersection of n intervals

©
: ./IIJ'

dz
26

Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Existential quantification: Similar to the example before.
Jz. A0 (mi,3) = Ny {0} m) (i, ;)

2 N /

TV
intersection of n intervals pairwise intersections
ug
AT
B
- J

dz
26

Conclusion

Contributions

Translation from first-order logic to CFMs.

27

Contributions

Translation from first-order logic to CFMs.

e A new Biichi theorem: CFM = EMSO|<, <1], even with
unbounded channels.

27

Contributions

Translation from first-order logic to CFMs.

e A new Biichi theorem: CFM = EMSO|<, <1], even with
unbounded channels.

e New proof that over existentially-bounded MSCs,
CFM = MSO[<, «.

27

Contributions

Translation from first-order logic to CFMs.

e A new Biichi theorem: CFM = EMSO|<, <1], even with
unbounded channels.

e New proof that over existentially-bounded MSCs,
CFM = MSO[<, «.

FO = FO? over interval-preserving structures.

27

Contributions

Translation from first-order logic to CFMs.

e A new Biichi theorem: CFM = EMSO|<, <1], even with
unbounded channels.

e New proof that over existentially-bounded MSCs,
CFM = MSO[<, «.
FO = FO? over interval-preserving structures.

e New, unifying proof of several known results, including
linear orders, (R, <,+1), and Mazurkiewicz traces.

27

Contributions

Translation from first-order logic to CFMs.
e A new Biichi theorem: CFM = EMSO|<, <], even with
unbounded channels.
e New proof that over existentially-bounded MSCs,
CFM = MSO[<, «.
FO = FO? over interval-preserving structures.

e New, unifying proof of several known results, including
linear orders, (R, <,+1), and Mazurkiewicz traces.

e New applications: polynomial functions, linear orders with

monotone functions, MSCs, ...

27

Contributions

Star-free PDL: an interesting specification language
and a key technical tool.

28

Contributions

Star-free PDL: an interesting specification language
and a key technical tool.

e Natural variant of PDL, equivalent to FO?.

28

Contributions

Star-free PDL: an interesting specification language
and a key technical tool.

e Natural variant of PDL, equivalent to FO?.

e 2-dimensional temporal logic expressively complete over
interval-preserving structures.

28

Contributions

Star-free PDL: an interesting specification language
and a key technical tool.

e Natural variant of PDL, equivalent to FO?.

e 2-dimensional temporal logic expressively complete over
interval-preserving structures.

o (Fragments of) PDL serve as intermediate steps to go

e from FO to FO? over interval-preserving structures.
e from FO to CFMs.

28

Contributions

Star-free PDL: an interesting specification language
and a key technical tool.

e Natural variant of PDL, equivalent to FO?.

e 2-dimensional temporal logic expressively complete over
interval-preserving structures.

o (Fragments of) PDL serve as intermediate steps to go

e from FO to FO? over interval-preserving structures.
e from FO to CFMs.

e Over MSCs: expressively complete fragment closer to LTL
and with a PSPACE translation into CFMs.

28

Continue a unified approach to expressivity problems:
what makes a result work, and how can we extend it?

29

Continue a unified approach to expressivity problems:
what makes a result work, and how can we extend it?

e Can we find a sufficient condition for the 3-variable
property generalizing both interval-preserving structures
and classes of trees for which similar results are known?

29

Continue a unified approach to expressivity problems:
what makes a result work, and how can we extend it?

e Can we find a sufficient condition for the 3-variable
property generalizing both interval-preserving structures
and classes of trees for which similar results are known?

e What are necessary conditions for the 3-variable property?

29

Continue a unified approach to expressivity problems:
what makes a result work, and how can we extend it?

e Can we find a sufficient condition for the 3-variable
property generalizing both interval-preserving structures
and classes of trees for which similar results are known?

e What are necessary conditions for the 3-variable property?

e Over which classes of structures are EMSO and automata
equivalent?

29

Continue a unified approach to expressivity problems:
what makes a result work, and how can we extend it?

e Can we find a sufficient condition for the 3-variable
property generalizing both interval-preserving structures
and classes of trees for which similar results are known?

e What are necessary conditions for the 3-variable property?

e Over which classes of structures are EMSO and automata
equivalent?

e What are sufficient conditions for the existence of an
expressively complete (1-dimensional) temporal logic?

29

Specific questions for MSCs.

30

Specific questions for MSCs.

e Can every formula of CPDL, with operations (-, *, +, 1),

be translated into an equivalent CFM?
Known: YES with (-,c,+,71) or (-, *,+), NO with (-, ,+,n,~ 1)

[Bollig, Kuske, Meinecke 2010]

30

Specific questions for MSCs.

e Can every formula of CPDL, with operations (-, *, +, 1),
be translated into an equivalent CFM?
Known: YES with (-,c,+,71) or (-, *,+), NO with (-, ,+,n,~ 1)
[Bollig, Kuske, Meinecke 2010]
e Is there a 1-dimensional temporal logic over MSC that is
expressively complete for first-order logic?

30

	Introduction
	Star-free PDL
	A Büchi theorem for message-passing systems
	The 3-variable property for interval-preserving structures
	Conclusion

