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Specification: many choices!

Example: “every request is eventually granted”

G(request = F grant) * . (request - X* - grant)*
Linear temporal logic (LTL) Regular expression
Vz.(request(z) = Jy.x < y A grant(y))
First-order logic (FO)

Comparing specification languages

e Expressive power e Succinctness

e Complexity/Decidability e Convenience

Comparisons with automata
Given a specification, can we always construct an equivalent
automaton? 3
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Finite automata and MSO have the same expressive power.

Theorem

Over words, FO[<]| defines the same class of languages as

o LTL [Kamp 1968]
o FO’[<] [Kamp 1968]
e Star-free expressions [McNaughton, Papert 1971]
e Counter-free automata [McNaughton, Papert 1971]
e Aperiodic monoids [Schiitzenberger 1965]

What about more complex structures?
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Syntax of Star-free Propositional Dynamic Logic

State formulas:
pu=pleVe|-p|(r)e
Path formulas:
7= R|{p}? 71|

PDLgs

Combines features from
e Propositional Dynamic Logic [Fisher, Ladner 1979]
e Star-free regular expressions
e The calculus of relations
Theorem [Tarski, Givant 1987] (calculus of relations)

PDL and FO? are expressively equivalent.
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b.lq I b, 7y eg. X ={a,b,c}
b1, b, %,

e Sends/receives from a

finite message alphabet,

q ¢, 754 )
Reliable unbounded
c, !ﬂ c,', point-to-point
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Message Sequence Charts (MSC)

The language of a CFM is a set of MSCs.

Partial order consisting of
e One sequence of events for each process

e Message relation connecting matching sends and receives
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Expressive power of CFMs

Theorem [Biichi 1960, Elgot 1961, Trakhtenbrot 1962]
If there is only one process,

CFMs (= finite automata) = MSO[<, <].

With > 2 processes, )

= [Bollig, Leucker 2006]
Theorem [Bollig, Leucker 2006]

Over finite MSCs, CFM = EMSO[«, —].

Theorem [Bollig, Kuske 2008]
Over infinite MSCs, CFM = EMSO*[«, —].

Note: here the happened-before relation < is

— Harder to formalize concurrency properties such as mutual exclusion.
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Expressive power of CFMs

The equivalence with MSO[<, <] is recovered if we assume
that the channels are of

Theorem
CFM = MSO[<«, <] over
e finite, universally bounded MSCs
[Henriksen,Mukund,Narayan Kumar,Sohoni, Thiagarajan 2005]
e infinite, universally bounded MSCs [Kuske 2003]

e finite, existentially bounded MSCs
[Genest, Kuske, Muscholl 2006]

Remark: model-checking is undecidable in general, but
decidable when restricted to bounded MSCs.
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Some proof ideas

Remarks
e CFM C EMSO[«, <] already known

e EMSO|«, <] C CFM follows from FO[<1, <] C CFM and
closure under projection

* FO[<]7 S] - FO[<]7 Sproc]
Goal: FO[<, <,roc] € CFM

Difficulty: CFMs are not closed under complement.

Idea: Use fragments of star-free PDL as intermediate steps.

ii5)
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A fragment of PDL without explicit complements
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State formulas:
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Path formulas:
mo=— | g [ {e}? a7t 7w | e | K| T |5
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A fragment of PDL without explicit complements

PDLSf[i>, Loop]
State formulas:
pu=P|ploVeo|-p]|(me|Loop(r)

Path formulas:
mo=— | g [ {e}? a7t 7w | e | K| T |5

e Loop(m): e € [Loop(n)] if (e, e) € [n]

e | is the universal relation

e > similar to Until ._)8.0_)8.0 ...... L,

Negation occurs only at the level of state formulas (as in LTL)

16
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Translation from first-order logic to CFMs

¢ =3X;...3X,.¢
¢ € FO[<, <] e EMSO[«, <]

translation into star-free PDL
(non-elementary)

¢' € PDLg[%, Loop] with ¢ = ¢/

removal of Loop formulas
(PTIME)

¢" € PDLg[S] with ¢ = ¢ up to projection

similar to LTL — finite automata

(PspPACE)
\

CFM A with L(A) = L(p) <-======n--=- )

projection
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Theorem

Over MSCs, FO and PDLg; have the same expressive power.

Theorem

PDLs and FO? have the same expressive power.

\

formulas with at
most 3 variables

— MSCs have the 3-variable property.
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e For some classes of models, the hierarchy collapses:
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e Over arbitrary structures, strict hierarchy
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_,_——'—’ 9o
- . \
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e - ) A /
HALQ.H.I;;.HJML /\1§i<j§4 Z; # Ty . )
e T4 4
\ ° [ ) //
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Over words, Over linear orders,
FO=FO* | v FO = FO? v
[Kamp'68] [Immerman-Kozen'89]

What happens if we have additional binary relations?

Over ordered graphs, Over (R, <, +1),
Vk, FO # FO* X FO = FO? v
[Rossman’'08] [AHRW'15]
Over MSCs, Over Mazurkiewicz traces,
FO=F0O* |v FO = FO?
[Bollig-F.-Gastin'18] [Gastin-Mukund'02]

What do the positive results have in common?

20



Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications

21



Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...

21



Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...
2. (R, <, +1), (R, <, (+9)gen) - - -

21



Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...
2- (Ra S; +1)1 (Rv Sa (+Q>q€(@) 000D
3. (R, <) + polynomial functions

21



Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications
1. Linear orders: finite or infinite words, R, Q, ordinals...
2. (Ra <, +1)' (Rv <, (+Q>q€@) e
3. (R, <) + polynomial functions
4. MSCs

21



Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with

e one linear order <

e relations Ry, R, ... defined by monotone partial functions

e arbitrary unary predicates p,q, . ..

Applications

e -

. Linear orders: finite or infinite words, R, Q, ordinals...

(R, <, +1), (R, <, (+9)geq) - - -

(R, <) + polynomial functions

MSCs

Mazurkiewicz traces, pomsets without auto-concurrency
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Application to MSCs

| |

r G——h—ph—a—a—>C—a—a0—0a

e Process order <, can be extended to a linear order C

e Message relations <, , FIFO — monotone
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Generalisation

Theorem [F. 2019]
FO = PDLy = FO? over structures with
e one linear order <
° binary relations Ry, Ro, . ..

e arbitrary unary predicates p,q, . ..

Applications

. Linear orders with partial monotone functions

Linear orders: finite or infinite words, R, Q, ordinals...

(R, <,+1), (R, <, (+0)qeq) ---

(R, <) + polynomial functions

MSCs

Mazurkiewicz traces, pomsets without auto-concurrency 53
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How does the interval-preserving assumption help?

o(x1, 22, 3) = Fy. Ri(21,y) A Ra(w2,y) A Rs(xs,y)
(Ely Ri(z1,y) A Rao(x2,y) A Jz. R3 x,y))

(
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<
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=
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How does the interval-preserving assumption help?

o(x1, T2, x3) = Jy. Ri(x1,y) A Ra(x2,y) A Rs(xs,y)
= (Elx;;. Ry (1, x3) A Ro(xo, x3) A 3x1. R3(21, X3)

(
(

) A
31'2. 11)1 (.I'] , L) N Rs(l’d, .’132) A ElfL'l. Rg(l'l,l'g)) A\
E'Il. RQ([L’Q, 11) A RQ(LEg, Il) VAN E'.IQ. Rl(l’g, $1)>

R3(x3)
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‘ Equivalent FO? formula? ’
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Interval-preserving fragment of star-free PDL

Goal: inductive translation from FO to PDLy = FO3.

Invariant: use only interval-preserving relations

State formulas:

=PleVe|

¥ e Ve lwl[{me PDL.,
Path formulas:

ni=<|R|{p}? |7t |m-7|7UT |7
Ti=<|R|{p}? |7t |7-7w |77

’ \C | \C int
(-7 (S m->)° | PDLs

7 (=m>)

Lemma: V7 € PDLY, [x] is interval-preserving.
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Equivalences over interval-preserving structures

? .
FO =—> PDLY

(Induction) Any FO formula ®(z1,...,z,) is equivalent to a
finite positive boolean combination of formulas of the form
770 (x;,7;), where 7 € PDLI.

e Existential quantification: Similar to the example before.
Jz. A0 (mi,3) = Ny {0} m ) (i, ;)
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e A new Biichi theorem: CFM = EMSO|<, <], even with
unbounded channels.
e New proof that over existentially-bounded MSCs,
CFM = MSO[<, «.
FO = FO? over interval-preserving structures.

e New, unifying proof of several known results, including
linear orders, (R, <,+1), and Mazurkiewicz traces.

e New applications: polynomial functions, linear orders with

monotone functions, MSCs, ...
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Contributions

Star-free PDL: an interesting specification language
and a key technical tool.

e Natural variant of PDL, equivalent to FO?.

e 2-dimensional temporal logic expressively complete over
interval-preserving structures.

o (Fragments of) PDL serve as intermediate steps to go

e from FO to FO? over interval-preserving structures.
e from FO to CFMs.

e Over MSCs: expressively complete fragment closer to LTL
and with a PSPACE translation into CFMs.
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Continue a unified approach to expressivity problems:
what makes a result work, and how can we extend it?

e Can we find a sufficient condition for the 3-variable
property generalizing both interval-preserving structures
and classes of trees for which similar results are known?

e What are necessary conditions for the 3-variable property?

e Over which classes of structures are EMSO and automata
equivalent?

e What are sufficient conditions for the existence of an
expressively complete (1-dimensional) temporal logic?
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be translated into an equivalent CFM?
Known: YES with (-,c,+,71) or (-, *,+), NO with (-, ,+,n,~ 1)

[Bollig, Kuske, Meinecke 2010]
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Specific questions for MSCs.

e Can every formula of CPDL, with operations (-, *, +, 1),
be translated into an equivalent CFM?
Known: YES with (-,c,+,71) or (-, *,+), NO with (-, ,+,n,~ 1)
[Bollig, Kuske, Meinecke 2010]
e Is there a 1-dimensional temporal logic over MSC that is
expressively complete for first-order logic?
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