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Vorsitzender des Promotionsorgans: Prof. Dr.-Ing. Reinhard Lerch

Gutachter: Prof. Dr. Lutz Schröder
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Abstract: The coalgebraic µ-calculus is an expressive logic that generalizes the
modal µ-calculus by interpreting formulas over T -coalgebras rather than Kripke
structures. Due to the presence of fixpoint operators, the semantics of µ-calculi is rather
involved and satisfiability checking for µ-calculus formulas typically necessitates the
use of automata theoretic concepts, in particular the determinization of automata on
infinite words. We introduce novel notions of automata in which all accepting runs are
deterministic or linear, from some point on, and give novel determinization methods
for such automata. In particular, we show that limit-deterministic parity automata
with n states and k priorities can be determinized to parity automata of size O((nk)!)
and with O(nk) priorities and that limit-linear Co-Büchi automata of size n can be
determinized to Co-Büchi automata of size at most n2 · 2n. We obtain satisfiability
games for the coalgebraic µ-calculus by employing tracking automata, that is, parity
automata that track fixpoint formulas through pre-tableaux. The tracking automata
for alternation-free formulas are parity automata with just the priorities 0 and 1, i.e.
Co-Büchi automata; tracking automata for aconjunctive formulas are limit-deterministic
and tracking automata for linear formulas are limit-linear. We define satisfiability
games via determinization, that is, satisfiability games for the coalgebraic µ-calculus
that are constructed by determinizing tracking automata, and show that Élöıse wins
such a game if and only if the corresponding formula is satisfiable. We also prove
that for coalgebraic µ-calculus formulas of size n and with alternation depth k, the
number of Abélard-nodes in the corresponding satisfiability game via determinization
is bounded by n2 · 2n for linear formulas and by 3n for alternation-free formulas,
and is in O((nk)!) for aconjunctive formulas and in O(n!(nk)nk) for unrestricted
formulas. As models are built over Abélard-nodes, we obtain corresponding bounds on
the sizes of models for satisfiable formulas from the mentioned fragments. We also
introduce satisfiability games via focusing that can be constructed without determinizing
automata but only work for formulas that are both alternation-free and aconjunctive.
We present an algorithm that can be instantiated to any of the presented games and
solves the satisfiability problem of the (corresponding fragment of the) coalgebraic
µ-calculus in ExpTime and on-the-fly. The algorithm has been implemented (see
https://www8.cs.fau.de/research:software:cool) and it has been shown that both
the asymptotically smaller games obtained by the new determinization procedures and
on-the-fly solving allows for shorter runtimes in comparison with other satisfiability
checking tools.
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Zusammenfassung: Die Theorie der universellen Koalgebra stellt ein mathema-
tisches Rahmenwerk zur formalen Behandlung von reaktiven Systemen in der Informatik
dar. Die Koalgebraische Modallogik verwendet in diesem Rahmenwerk Koalgebren als
logische Modelle und ermöglicht es somit, das Verhalten von allgemeinen reaktiven
Systemen präzise zu Beschreiben. Der koalgebraische µ-Kalkül erweitert koalgebraische
Modallogik um Fixpunktoperatoren mit deren Hilfe es möglich ist, differenzierte Aussagen
über unendliches Verhalten von reaktiven Systemen zu treffen. Diese Arbeit behandelt
das Erfüllbarkeitsproblem des koalgebraischen µ-Kalküls; hierzu werden sogenannte
Erfüllbarkeitsspiele zunächst definiert und kommen sodann in einem generischen Algo-
rithmus zur Anwendung um die Erfüllbarkeit von koalgebraischen µ-Kalkülformeln in
ExpTime zu überprüfen. Die Konstruktion der Erfüllbarkeitsspiele determinisiert dabei
Automaten über unendlichen Wörtern; zwei neuartige Algorithmen zur Determinisierung
sogenannter limes-linearer und limes-deterministischer Automaten stellen ein zentrales
Ergebnis der Arbeit dar. Für bestimmte Fragmente des koalgebraischen µ-Kalküls haben
die resultierenden Erfüllbarkeitsspiele sodann eine asymptotisch kleinere Größe, als die
mit bisherigen Determinisierungsmethoden erzeugbaren Erfüllbarkeitspiele.

Die zentralen theoretischen Ergebnisse dieser Dissertation wurden als wissenschaftliche
Publikationen veröffentlicht [23,25,24].

Der entwickelte Erfüllbarkeitsprüfungsalgorithmus wurde als Erweiterung des Be-
weiswerkzeugs Coalgebraic Ontology Logic Reasoner (COOL) implementiert; der Quell-
code, Testformeln, ein Formelgenerator sowie weiterführende Informationen sind unter
https://www8.cs.fau.de/research:software:cool zu finden. Die Implementierung
unerstützt das sogenannte on-the-fly-Lösen der jeweiligen Erfüllbarkeitspiele; somit kann
die Erfüllbarkeit bzw. Unerfüllbarkeit einer Formel gegebenfalls erkannt werden, bevor
das Spiel vollständig konstruiert wurde.
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1 Introduction

In recent decades, the theory of universal coalgebra [43] has been established as a
mathematically inspired area of research in theoretical computer science that forms the
basis of a unified concept of formal reasoning about reactive systems. Coalgebraic modal
logics [35,38,51] have emerged as suitable generic and expressive languages to describe
the behaviour of coalgebras. The coalgebraic µ-calculus [7] is an even more expressive
logic that is obtained by extending coalgebraic modal logic with fixpoint operators which
enable statements about the infinite behaviour of coalgebras. This thesis contributes
to the research on the satisfiability problem of this logic. Due to the rather involved
structure of the semantics of the coalgebraic µ-calculus, automata theoretic, logical
and coalgebraic concepts and methods have to combined to obtain correct and efficient
decision procedures for this decision problem.

In this context, the central novel contributions of the work that is summarized in this
thesis comprise

– the definition of limit-deterministic and limit-linear automata on infinite words,
– the conception of novel determinization methods for these types of automata,
– the definition of so-called satisfiability games via tracking automata, that is, generic

satisfiability games for the coalgebraic µ-calculus that are constructed by determinizing
tracking automata and can be instantiated to different fragments of the logic. For
aconjunctive formulas [28], the involved determinization method for limit-deterministic
parity automata uses partial permutations and results in asymptotically smaller
parity games [24] than the Safra/Piterman [44,42] construction. For alternation-
free formulas [23], Büchi games are obtained by using standard Co-Büchi automaton
determinization. For linear formulas, Büchi games are obtained by using the introduced
determinization procedure for limit-linear Co-Büchi automata.

– the definition of satisfiability games via focusing for coalgebraic µ-calculus formulas
that are both alternation-free and aconjunctive. These games generalize the previously
known focusing games for CTL [31].

– the presentation of a generic tableau-based algorithm that employs global caching to
solve all types of satisfiability games that are presented in this work, thus deciding
satisfiability of coalgebraic µ-calculus formulas in ExpTime (under mild assumptions);
depending on the fragment to which the algorithm is instantiated, the algorithm can
use the smallest appropriate satisfiability games. The algorithm supports on-the-fly
solving of games and hence may finish satisfiability proofs or refutations early.

The central theoretical results of this work have been published [23,25,24].

The developed global caching algorithm has been implemented as part of the
Coalgebraic Ontology Logic Reasoner (COOL); the source code, test formulas, bench-
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marking scripts, a formula generator, and more information on the tool can be found
at https://www8.cs.fau.de/research:software:cool. The current version of the
implementation supports various coalgebraic base logics and realizes satisfiability checking
by means of the introduced satisfiability games via focusing for the alternation-free and
aconjunctive fragment of the coalgebraic µ-calculus (using determinization of limit-linear
Co-Büchi automata) and the introduced satisfiability games via tracking automata
for the alternation-free and the aconjunctive fragments of the coalgebraic µ-calculus
(using standard determinization of Co-Büchi automata and permutation determinization
of limit-deterministic parity automata, respectively). The implementation supports
on-the-fly solving for all currently implemented fragments and the practical effect of a)
satisfiability games that are asymptotically smaller than the standard games used by
other tools, b) on-the-fly solving and c) global caching has been shown in [25,24].

This thesis is structured as follows: We introduce several basic notions such as
automata on finite words, finite satisfiability games for basic modal logic, fixpoints of
functions, the relational µ-calculus, and T -coalgebras in Chapter 2. Then we recall
the generalization of modal logic to the coalgebraic level of generality in Chapter 3
and introduce the central concept of one-step rules that enable automated reasoning
in coalgebraic logic by means of sequent or tableau-methods; we also define finite
satisfiability games that use one-step rules to decide the satisfiability of coalgebraic
modal formulas in PSpace (under mild assumptions). In Chapter 4, we introduce
automata on infinite words along with infinite games and present determinization
methods for various types of automata on infinite words; the determinization methods
for limit-deterministic parity automata and limit-linear Co-Büchi automata are novel.
Furthermore, we give a discourse on the definition of regions in automata and games by
relational µ-calculus formulas, recalling the close connection between model checking
for the µ-calculus and some automata and game theoretic problems. Chapter 5 forms
the core of this work and combines the coalgebraic notions and the automata theoretic
procedures and results from the previous chapters to construct two kinds of generic
satisfiability games for the coalgebraic µ-calculus. The construction of these satisfiability
games can be instantiated to various fragments of the coalgebraic µ-calculus and then
uses the appropriate determinization procedure (if necessary); depending on the syntactic
structure of the input formula, this may yield games that are asymptotically smaller
than the standard games. We also present the generic algorithm that can be instantiated
to solve all introduced satisfiability games in ExpTime (under mild assumptions).

Acknowledgements: I would like to thank Lutz Schröder for his continuous and enduring
support, and for encouraging me to make scientific discoveries. He made this work possible.
Furthermore, I am thankful to Rajeev Goré, Dirk Pattinson, and Till Mossakowski for
helpful discussions and to Horst Reichel and Markus Roggenbach for giving me direction.

I am grateful to my parents for planting the seed that now came to fruition.
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2 Preliminaries and Notation

Throughout this work, we will make frequent use of the (bounded) powerset construction
on sets which is denoted by P (Pω) and assigns to each set U the set of all its subsets (of
cardinality at most ω), i.e. P(U) = {V | V ⊆ U} (Pω(U) = {V | V ⊆ U, |V | ≤ ω}, where
|V | denotes the cardinality of the set V ). Given a set U , a binary relation R ⊆ U ×U on
U and an element u ∈ U , we furthermore define the set R(u) = {v ∈ U | (u, v) ∈ R}.
The relation R is said to be cyclic if there is a sequence u0, . . . , un of elements from U
with (ui, ui+1) ∈ R for all 0 ≤ i < n and u0 = un and acyclic otherwise. Given two sets
U and V , we define U \ V = {u ∈ U | u /∈ V }.

We recall several basic notions and results about finite automata and games, fixpoints
of functions, the standard µ-calculus and T -coalgebras.

2.1 Automata on Finite Words

Definition 2.1.1 (Finite and infinite words, languages). Given a finite alphabet
Σ, i.e. a finite set of letters a ∈ Σ, the set Σ∗ of finite words over Σ is defined by

Σ∗ = {w0w1 . . . wn | n ∈ N, wi ∈ Σ}.

The length |w| of a finite word w = w0w1 . . . wn is just the number of letters it contains,
i.e. n+ 1. The set Σω of infinite words over Σ is defined by

Σω = {w : N→ Σ},

where w(i) denotes the i-th letter in the word w. A language is just a set of words.

Definition 2.1.2 (Automata on finite words). A finite automaton is a tuple A =
(V,Σ,∆, v0, F ), where V is a finite set of states, Σ is a finite alphabet, ∆ ⊆ V ×Σ × V
a transition relation, v0 is an initial state and F ⊆ V a set of accepting states. If
∆ is a function, then A is a deterministic finite automaton (DFA); otherwise, it is a
nondeterministic finite automaton (NFA). For deterministic automata, we usually write
δ instead of ∆. For a ∈ Σ, an a-transition (in A) is a tuple (u, a, v) ∈ ∆. For v ∈ V ,
U ⊆ V and a ∈ Σ, let

∆(v, a) := {w | (v, a, w) ∈ ∆}

denote the set of states to which v has an a-transition and let

∆(U, a) :=
⋃
v∈U

∆(v, a)
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denote the set of states to which some state from U has an a-transition. Given a finite
word w = w0w1 . . . wn ∈ Σ∗ of length |w| = n+ 1, a finite run of an automaton A on w is
a sequence ρ = v0v1 . . . vn ∈ V n+1 of states such that for all 0 ≤ i < n, vi+1 ∈ ∆(vi, wi);
we denote the i-th state in ρ by ρ(i) := vi and the set of all finite runs of the automaton
A on a word w that start at state v ∈ V by runf (A, v, w) (or just by runf (A, w) if v = v0).
The length |ρ| of a finite run ρ is just the number of states in ρ. The language L(A) that
is recognized or accepted by an automaton A on finite words is defined by

L(A) := {w ∈ Σ∗ | ∃ρ ∈ runf (A, w).ρ(|ρ|) ∈ F},

i.e. by collecting those finite words for which there is a finite run of the automaton that
starts at the initial state and ends in an accepting state.

The standard method to transform a NFA A = (V,Σ,∆, v0, F ) to an equivalent DFA
is the powerset construction. Since several different states in A may be reached by reading
a single word w, the determinized automaton can be seen to be at each point (i.e. after
having read any number of letters) in a set of states rather than in a single state; this
emulates the nondeterministic choices that can be taken in A.

Definition 2.1.3 (Powerset automaton). Let A = (V,Σ,∆, v0, F ) be an NFA. We
define the deterministic automaton P(A) = (P(V ), Σ, δ, {v0}, F ′) to have subsets of V
(so-called macrostates) as states. A reachable macrostate contains all the states that are
reachable in A from v0 via some word w. The transition function δ : P(V )×Σ → P(V )
is defined for U ⊆ V and a ∈ Σ by

δ(U, a) = ∆(U, a),

i.e. δ(U, a) consists of all states to which an a-transition exists that starts at some state
from U . Intuitively, δ performs an a-transition on all states from U , i.e. traces all states
from U through one a-step in A. Finally, we define

F ′ = {U ⊆ V | U ∩ F 6= ∅},

i.e. a macrostate is accepting if and only if any of its states is accepting in A.

Fact 2.1.4. We have L(A) = L(P(A)) and |P(V )| = 2|V |.

Thus deterministic and nondeterministic automata are equally expressive; it is a standard
result that finite automata recognize regular languages, i.e. languages that are definable
by regular expressions.

2.2 Fixpoints of Functions

Definition 2.2.1 (Fixpoints). Let U be a set and let f : P(U)→ P(U) be a function.
Then f is called monotone w.r.t. set inclusion if for all V,W ⊆ U , V ⊆ W implies
f(V ) ⊆ f(W ). We define the sets of prefixpoints, postfixpoints and fixpoints of f by
putting

4
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PRE(f) = {V ⊆ U | f(V ) ⊆ V }
POST(f) = {V ⊆ U | V ⊆ f(V )}

FIX(f) = {V ⊆ U | V = f(V )}

If FIX(f) has a greatest (least) element, the we refer to it as the greatest (least) fixpoint
of f and denote it by GFP(f) (LFP(f)). We also define the n-fold application f to a set
V ⊆ U by putting

f0(V ) = V, fn+1(V ) = f(fn(V )).

Greatest and least fixpoints of monotone functions can be characterized as follows:

Theorem 2.2.2 (Knaster-Tarski [54]). Given a set U and a function f : P(U) →
P(U) that is monotone w.r.t. set inclusion, we have

LFP(f) =
⋂

PRE(f) GFP(f) =
⋃

POST(f)

Proof. We consider the least fixpoint case and note that the proof of the greatest fixpoint
case is dual. Put Q :=

⋂
PRE(f) so that we have Q ⊆ Z for all Z ∈ PRE(f). By

monotonicity of f , we have f(Q) ⊆ f(Z) for all Z ∈ PRE(f) and hence by definition of
prefixpoints f(Q) ⊆ Z for all Z ∈ PRE(f). Thus f(Q) ⊆ Q, i.e. Q is a prefixpoint of f . It
remains to show that Q is also a postfixpoint of f , i.e. that Q ⊆ f(Q). Since Q ⊆ Z for all
Z ∈ PRE(f), it suffices to show that f(Q) ∈ PRE(f), i.e. that f(f(Q)) ⊆ f(Q). But this
follows by monotonicity from f(Q) ⊆ Q. Thus Q is a fixpoint of f . Let Q′ be a fixpoint of
f with Q′ ⊆ Q. Then Q′ is a prefixpoint of f and hence Q =

⋂
PRE(f) =

⋂
PRE(f)∩Q′

and Q ⊆ Q′, i.e. Q = Q′. Thus Q is the least fixpoint of f . �

For stabilizing functions, we can also construct the extremal fixpoints by finite
approximation (as in Kleene’s fixpoint theorem):

Lemma 2.2.3. Let f : P(U)→ P(U) be a function that is monotone w.r.t. set inclusion.
Further assume that there exist n,m ∈ N such that fn(∅) = f(fn(∅)) and fm(U) =
f(fm(U)) (such functions are said to be stabilizing). Then we have

LFP(f) = fn(∅) GFP(f) = fm(U),

where n and m are the least numbers such that fn(∅) = f(fn(∅)) and fm(U) = f(fm(U)).

Proof. We consider the least fixpoint case; the proof of the greatest fixpoint case is
dual. By Theorem 2.2.2, we have LFP(f) =

⋂
PRE(f). Since LFP(f) is contained in each

prefixpoint of f , LFP(f) is also contained in the fixpoint fn(∅). For the other direction,
we show fn(∅) ⊆ LFP(f) =

⋂
PRE(f) by induction over n. If n = 0, then f0(∅) = ∅ ⊆ Z

for all Z ∈ PRE(f). If n > 0, then let Z ∈ PRE(f) so that fn−1(∅) ⊆ Z by the induction
hypothesis. By monotonicity of f , we have fn(∅) = f(fn−1(∅)) ⊆ f(Z). Since Z is a
prefixpoint, f(Z) ⊆ Z and hence fn(∅) ⊆ Z. �

5



2.2 Fixpoints of Functions

We note that the construction of extremal fixpoints by approximation is applicable
in particular to all monotone functions over finite sets: If U is a finite set and f a
monotone function, then there obviously exist m,n ∈ N such that fn(∅) = fn+1(∅) and
fm(U) = fm+1(U), namely m = n = |U |.

Definition 2.2.4. Let U and V ⊆ U be two sets. The complement of V in U is defined
by V = U \ V . Let f : P(U) → P(U) and g : P(U) → P(U) be two functions. The
function g is complementary to f , if for all V ⊆ U ,

f(V ) = g(V ).

For all V,W ⊆ U , we have that V = V , that V = W implies V = W and that
V ⊆W implies V ⊇W .

Least and greatest fixpoints are dual concepts in the following sense:

Lemma 2.2.5. Let f : P(U) → P(U) be monotone w.r.t. set inclusion and let g be
complementary to f . Then

LFP(f) = GFP(g)

GFP(f) = LFP(g).

Proof. First note that since f is monotone and g is complementary to f , g is monotone
as well. We consider only the least fixpoint case, the proof of the greatest fixpoint case is
dual. We show that GFP(g) is a fixpoint of f that is contained in each prefixpoint of f .
Since g is complementary to f and since GFP(g) is a fixpoint of g, we have

f(GFP(g)) = g(GFP(g)) = g(GFP(g)) = GFP(g),

which shows that GFP(g) is a fixpoint of f . Now let Z be a prefixpoint of f so that
f(Z) ⊆ Z. Then

g(Z) = f(Z) = f(Z) ⊇ Z,

i.e. Z is a postfixpoint of g so that Z ⊆ GFP(g). But then Z ⊇ GFP(g), as required. �

Fixpoints operators can be nested: Consider a function f : P(U)k → P(U) that
maps k subsets of U to a single subset of U . The function f is said to be monotone
w.r.t. set inclusion if for all V1,W1, . . . , Vk,Wk ⊆ U , if Vi ⊆ Wi for all 1 ≤ i ≤ k, then
f(V1, . . . , Vk) ⊆ f(W1, . . . ,Wk). It is convenient to make the arguments explicit when
computing fixpoints of functions with several arguments. E.g. for k = 1, we may write
GFP X1.f(X1) instead of GFPf . As a corollary of Theorem 2.2.2, nested fixpoints of
monotone k-ary functions f : P(U)k → P(U) exist and are defined by

ηkXk. . . . η1X1.f(X1, . . . , Xk),

6
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where ηi ∈ {LFP,GFP} for 1 ≤ i ≤ k. Prominent examples of nested fixpoints include
νX2. µX1. f(X1, X2) and µX2. νX1. f(X1, X2), where the former computes the set of
those elements from U that satisfy a so-called Büchi property defined by f , i.e. elements
which can be computed by relying on X2 only finitely often or by relying on X1 infinitely
often; the latter fixpoint computes the set of elements from U that satisfy a Co-Büchi
property defined by f , i.e. that can be computed by relying only on X1 from some point
on (for more details, see Section 4.3).

When considering stabilizing functions, elements of nested fixpoints can be annotated
with nested time-outs, that is, sequences of natural numbers, assigning a time-out, i.e.
an approximation number, to each individual fixpoint (for non-stabilizing but monotone
functions, instead of natural numbers, ordinal numbers have to be used as approximation
numbers in nested time-outs). In [14], a concept similar to nested time-outs is introduced
in the more specific context of µ-calculus formulas and referred to as signatures.

Definition 2.2.6 (Time-outs for nested fixpoints). Let X be a finite set with n =
|X| and let f : P(X)k → P(X) be a k-ary monotone (and by finiteness of X, stabilizing)
function. Let m = (mk−1, . . . ,mk−j) be a time-out vector, that is, a vector of j ≤ k
natural numbers such that mi ≤ n for all k − j ≤ i ≤ k − 1 and mi = n for all even
k − j ≤ i ≤ k − 1. Also let

U = ηk−1Xk−1. . . . η0X0.f(X0, . . . , Xk−1) ⊆ X

where ηi = LFP if i is odd and ηi = GFP otherwise. We define the set Fi(m) for 0 ≤ i < k
by

Fi(m) =


∅ if i is odd and mi = 0

f(F0(m0), . . . , Fk−1(mk−1)) if i is odd and mi > 0

Gi(m) if i is even,

where

Gi(m) = ηiXi. . . . η0X0. f(X0, . . . , Xi, Fi+1(mi+1), . . . , Fk−1(mk−1)),

where for i ≥ k − j,

mi =

{
(mk−1, . . . ,mi − 1) if i is odd

(mk−1, . . . ,mi) if i is even

and where for i < k−j, mi is the vector (mk−1, . . . ,mk−j , n, . . . , n) of length k−i, that is,
m extended with i− j copies of n at the end. We abbreviate f(F0(m0), . . . , Fk−1(mk−1))
by fm and given an element x ∈ U , we say that x has (nested) time-out m for the
function f if x ∈ fm. We recall that the standard lexicographic ordering ≤l on vectors of
natural numbers of lengths j′ and k′ is defined by putting (m1, . . . ,mj′) ≤l (m′1, . . . ,m

′
k′)

if
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2.2 Fixpoints of Functions

1. j′ ≤ k′ and mi = m′i for 1 ≤ i ≤ j′ or

2. there is a 1 ≤ j ≤ j′ such that mj < m′j and for all 1 ≤ j′ < j, mj′ = m′j′ .

We observe that for all vectors m of length j and 1 ≤ i ≤ j, mi ≤l m. The least time-out
of x ∈ U for f is the least (w.r.t. ≤l) vector m such that x ∈ fm.

When considering time-outs for fixpoints of nesting depth k, two vectors
m = (mk−1, . . . ,mk−j) and m′ = (mk−1, . . . ,mk−j , n, . . . , n) with 1 ≤ j < k hence are
equivalent, i.e. we have fm = fm

′
; this is the case since m is padded to the right with

copies of n whenever necessary during the computation of fm. In this sense, e.g. the
empty time-out vector ε and the maximal vector (n, . . . , n) of length |k−1| are equivalent,
i.e. we have f ε = f (n,...,n). Usually we omit trailing copies of n when writing time-out
vectors.

We now show that the above indeed constitutes a definition, i.e. that nested time-outs
exist for elements x ∈ U of nested fixpoints of stabilizing functions. Items (1) and (2)
of Lemma 3 in [14] state an essentially equivalent property for signatures for µ-calculus
formulas.

Lemma 2.2.7. Let X, f and U be as defined above. For each x ∈ X, we have x ∈ U if
and only if there is a time-out vector m such that x ∈ fm.

Proof. We show U = f ε, noting that for all time-out vectors m, fm ⊆ f ε. To this end we
define, for 0 ≤ i < k and m, the set Ui(m) by

Ui(m) =

{
Hi(m) if i is odd

Gi(m) if i is even,

where

Hi(m) = (ηi−1Xi−1. . . . η0X0.f(X0, . . . , Xi, Ui+1(mi+1), . . . , Uk−1(mk−1)))
mi(∅);

here, mi is the i-th component of m if |m| ≥ i and n otherwise. We first
show that for all 0 ≤ i < k and m, Ui(mi) = Fi(mi). If i is even, then
Fi(mi) = Gi(mi) = Ui(mi) and we are done. If i is odd, then we proceed
by lexicographic induction over mi. We put m′ = mi and have Ui(m

′) =
Hi(m

′) = (ηi−1Xi−1. . . . η0X0.f(X0, . . . , Xi, Ui+1(m
′
i+1), . . . , Uk−1(m

′
k−1)))

m′i(∅). If m′i,
i.e. the i-th component of m′, is 0, then Hi(m

′) = ∅ = Fi(m
′). Otherwise

we have Fi(m
′) = f(F0(m

′
0), . . . , Fk−1(m

′
k−1)) = f(U0(m

′
0), . . . , Uk−1(m

′
k−1)) =

νX0.f(X0, U1(m
′
1), . . . , Uk−1(m

′
k−1)) = U0(m

′
0) = U0(m

′), where the second equality
is by the induction hypothesis for odd 0 < q < k since then m′q <l m

′ and since
Fq(m

′
q) = Uq(m

′
q) as shown above for even q. We also have for all 0 < i < k that
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2.2 Fixpoints of Functions

Ui(m
′) = Ui−1(m

′): If i is even, then

Ui(m
′) = Gi(m

′)

= ηiXi. . . . η0X0. f(X0, . . . , Xi, Fi+1(m
′
i+1), . . . , Fk−1(m

′
k−1))

= ηi−1Xi−1. . . . η0X0. f(X0, . . . , Xi−1, Ui(m
′
i), Fi+1(m

′
i+1), . . . , Fk−1(m

′
k−1))

= (ηi−2Xi−2. . . . η0X0. f(X0, . . . , Xi−1, Ui(m
′
i), . . . , Uk−1(m

′
k−1)))

n(∅)
= Hi−1(m

′) = Ui−1(m
′),

where ηi−1 = µ, using that Uq(m
′
q) = Uq(m

′
q) for 0 < q < k. If is odd, then

Ui(m
′) = Hi(m

′) = (fi−1)
n(∅) = fi−1((fi−1)

n−1(∅)) = fi−1(Hi(m
′
i)) = fi−1(Ui(m

′
i))

= ηi−1Xi−1. . . . η0X0. f(X0, . . . , Xi−1, Ui(m
′
i), . . . , Uk−1(m

′
k−1))

= Gi−1(m
′) = Ui−1(m

′),

where fi−1 is the function that maps the input set Xi to the set
ηi−1Xi−1. . . . η0X0. f(X0, . . . , Xi, Ui+1(m

′
i+1), . . . , Uk−1(m

′
k−1)) and the second equal-

ity is by Lemma 2.2.3, relying on the finiteness of X. Thus we have shown
Fi(m

′) = U0(m
′) = Ui(m

′). Then we have

U = Uk−1(ε) = U0(ε) = f(U0(ε0), . . . , Uk−1(εk−1)) = f(F0(ε0), . . . , Fk−1(εk−1)) = f ε,

as required. �

Proofs concerning nested fixpoints typically involve the nesting of proofs by induction
and proofs by coinduction (see e.g. [43]) where the lexicographic order on nested time-outs
(as defined above) serves as termination measure for the induction part of the proofs.
For nested fixpoints over finite sets, the correctness of this proof principle is based on
Lemma 2.2.7 which guarantees the existence of termination measures for all elements of
the respective fixpoints.

Example 2.2.8. Let X = {x, y, z} with n := |X| = 3, let f : (P(X))3 → P(X) be
defined by

f(X1, X2, X3) = {u ∈ X | u = y, {x} ⊆ X1 or

u = x, {y, z} ∩X2 6= ∅ or

u = z, {x, y} ⊆ X3}

for X1, X2, X3 ⊆ X and let U = µX3.νX2.µX1.f(X1, X2, X3). Intuitively, U is the
winning region of player Élöıse in a parity game (see Definition 4.2.1 below) with set of
nodes X where the nodes x, y and z have the priorities 2, 1 and 3, respectively, where
x is an Élöıse-node with moves to y and z and where y and z are Abélard-nodes with
moves to x and x and y, respectively. To show that U = X, it suffices by Lemma 2.2.7 to
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2.3 The Relational µ-Calculus

show that each node in X has some nested time-out. First we show that x has time-outs
(1, n, n), i.e. that

x ∈ f (1,n,n) = f(F1((1, n, n)1), F2((1, n, n)2), F3((1, n, n)3))

= f(F1(1, n, n− 1), F2(1, n), F3(0))

= f(F1(1, n, n− 1), F2(1, n), ∅)

which is, by definition of f , the case if and only if {y, z} ∩ F2(1, n) 6= ∅. We
do not have z ∈ F2(1, n) as z ∈ F2(1, n) = G2(0, n) = νX2.µX1.f(X1, X2, ∅) =
f(µX1.f(X1, F2(1, n), ∅), F2(1, n), ∅) by definition of f if and only if {x, y} ⊆ ∅. However,
we have y ∈ F2(1, n) = f (1,n,n) = f(F1(1, n, n − 1), F2(1, n), ∅): This is by definition
of f the case if and only if x ∈ F1(1, n, n − 1) which itself is the case if and only if
{y, z} ∩X2 6= ∅. Thus we have shown that no contradiction arises from y being contained
in the greatest fixpoint F2(1, n); hence, y is by coinduction contained in F2(1, n). During
the above derivation, we already have shown y ∈ f (1,n,n), i.e. that y has time-outs (1, n, n)
and that z /∈ F2(1, n) = f (1,n,n), i.e. that z does not have time-outs (1, n, n). However, we
have z ∈ f (2,n,n): This is the case if and only if z ∈ f(F1(2, n, n−1), F2(2, n), F3(1)) which
itself is the case if and only if {x, y} ∈ F3(1) = f(F1(1, n, n−1), F2(1, n), F3(0)) = f (1,n,n)

which has been shown above. We observe that the unfolding of least fixpoints (i.e. the
unravelling of clauses Fi(m) with i odd) reduces nested time-outs. In particular, we have
(2, n, n) >l (1, n, n), where x, y ∈ f (1,n,n) 63 z but z ∈ f (2,n,n). In terms of parity games,
we have shown that player Élöıse wins all nodes in the game by means of the strategy
that moves from x to y. As plays of parity games that contain n consequent occurrences
of a fixed odd priority visit at least one node twice and hence contain a cycle that is
lost by Élöıse, a time-out of n for an odd priority intuitively means that the respective
priority may be visited at most n− 1 times. Hence the mentioned strategy wins the nodes
x and y without passing the node z at all (as x, y ∈ f (1,n,n)) and the node z with passing
z just once (as z ∈ f (2,n,n)).

2.3 The Relational µ-Calculus

We briefly recall the definition of the µ-calculus [28,29]. We fix a set P of propositions, a
set A of actions, and a set V of fixpoint variables. The set Lµ of µ-calculus formulas is
the set of all formulas φ, ψ that can be constructed by the grammar

ψ, φ ::= ⊥ | > | p | ¬p | X | ψ ∧ φ | ψ ∨ φ | 〈a〉ψ | [a]ψ | µX.ψ | νX.ψ

where p ∈ P , a ∈ A, and X ∈ V; we write |ψ| for the size of a formula ψ. Throughout this
work, we use η to denote one of the fixpoint operators µ or ν and write η to denote the
dual of η (i.e. µ = ν, ν = µ). We refer to formulas of the form ηX.ψ as fixpoint literals, to
formulas of the form 〈a〉ψ or [a]ψ as modal literals, and to p, ¬p as propositional literals.
The operators µ and ν bind their variables, inducing a standard notion of free variables
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in formulas. We refer to a variable that is bound by a least (greatest) fixpoint operator
as µ-variable (ν-variable). We denote the set of free variables of a formula ψ by FV(ψ).
We write ψ ≤ φ (ψ < φ) to indicate that ψ is a (proper) subformula of φ.

Formulas ψ ∈ Lµ are evaluated over Kripke structures K = (W, (Ra)a∈A, π), consisting
of a set W of states, a family (Ra)a∈A of relations Ra ⊆ W × W , and a valuation
π : P → P(W ) of the propositions. Given an interpretation i : V → P(W ) of the
fixpoint variables, we define [[ψ]]i ⊆ W by the obvious clauses for Boolean operators
and propositions, [[X]]i = i(X) for X ∈ V, [[〈a〉ψ]]i = {v ∈ W | Ra(v) ∩ [[ψ]]i 6= ∅},
[[[a]ψ]]i = {v ∈W | Ra(v) ⊆ [[ψ]]i}, [[µX.ψ]]i = LFP[[ψ]]Xi and [[νX.ψ]]i = GFP[[ψ]]Xi , where
Ra(v) = {w ∈ W | (v, w) ∈ Ra} and [[ψ]]Xi (V ) = [[ψ]]i[X 7→V ] for V ⊆ W . If ψ does not
contain free variables, then [[ψ]]i does not depend on i, so we just write [[ψ]]. In finite
models there is by Lemma 2.2.7 for all formulas ψ with FV (ψ) = {X0, . . . , Xk−1} and
all states x ∈ [[ηk−1Xk−1. . . . .η0X0. ψ]] some time-out vector m such that x has time-outs
m for the fixpoint literal ηk−1Xk−1. . . . .η0X0. ψ.

A µ-calculus formula ψ is satisfiable if there is a Kripke structure K = (W, (Ra)a∈A, π)
and a state v ∈ W such that v ∈ [[ψ]], and unsatisfiable otherwise. The formula ψ is
valid if for all Kripke structures K = (W, (Ra)a∈A, π) and all states v ∈W , v ∈ [[ψ]]. The
satisfiability problem of the modal µ-calculus consists in deciding whether a given input
formula is satisfiable; the problem is known to be ExpTime-complete [11].

2.4 Finite Games

We now define finite two-player games which essentially are a restriction of infinite
games, such as parity games, to finite plays (see e.g. [21] for an introduction to infinite
games). Formally, a finite two-player game G = (V,E) consists of a finite set of nodes
V and an acyclic set of moves E ⊆ V × V ; the data G is also referred to as a game
arena. Such games are played between the two players Élöıse and Abélard and the set
of nodes V is partitioned accordingly as V∃ ∪· V∀, where the nodes from V∃ belong to
Élöıse and the nodes from V∀ belong to Abélard. A play in a finite game G is a finite
sequence ρ = v0v1 . . . vn ∈ V n+1 of nodes such that E(vn) = ∅ and for all 0 ≤ i < n,
(vi, vi+1) ∈ E; we denote the i-th node in ρ by ρ(i) and say that ρ starts at ρ(0) = v0.
Player Élöıse wins play ρ if vn ∈ V∀ and loses it otherwise. Player Abélard wins a play
if and only if Élöıse loses it. For U ⊆ V , a (history-free) U-strategy s : U → V selects
a move s(v) for each v ∈ U . We call V∃-strategies Élöıse-strategies and V∀-strategies
Abélard-strategies. A play ρ of length n+1 conforms to a U -strategy s, if for all 0 ≤ i < n,
ρ(i) ∈ U implies ρ(i+ 1) = s(i). An Élöıse-strategy s is a winning strategy for Élöıse at a
node v ∈ V if she wins every play that starts at v and conforms to s; then we say that
Élöıse wins v with strategy s. We have an analogous notion of winning strategies for
Abélard. Finite games are determined, i.e. every node v ∈ V is won by exactly one of the
two players. Thus we define the winning regions win∃ and win∀, i.e. the sets of nodes that
are won by the respective player.
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Since games are just Kripke structures with atoms indicating the ownership of nodes,
the winning region win∃ of Élöıse in G can be specified by the µ-calculus formula

φ∃ = µX. ((∀ ∧�EX) ∨ (∃ ∧ ♦EX)),

where [[∃]] = V∃, [[∀]] = V∀, [[♦EX]](X) = {v ∈ V | E(v) ∩X 6= ∅} and [[�EX]](X) = {v ∈
V | E(v) ⊆ X}. Thus win∃ = [[φ∃]] is the set of nodes in which Élöıse can enforce that
Abélard gets stuck, i.e. that for any sequence of moves, Élöıse always can move when an
Élöıse-node is reached. Since all plays in finite games are finite, a least fixpoint suffices to
express the property that no play gets stuck in an Élöıse-node. In Section 4.3.6 below, we
extend the specification of regions in games by means of µ-calculus formulas to infinite
games (such as parity games).

2.5 Finite Satisfiability Games for Basic Modal Logic

We now introduce finite satisfiability games for modal formulas, i.e. µ-calculus formulas
which contain neither fixpoint operators nor fixpoint variables. For brevity we restrict
our attention to formulas without atoms and with |A| = 1, i.e. with just a single pair of
modalities ♦ and �, and call such formulas basic modal formulas.

Definition 2.5.1 (Finite satisfiability games). Let ψ be a basic modal formula and
let Cl(ψ) = {φ | φ ≤ ψ} denote the closure (i.e. the set of all subformulas) of ψ, noting
|Cl(ψ)| ≤ |ψ|. We define the finite satisfiability game G(ψ) = (V,E) by putting V = V∃∪V∀
where V∀ = P(Cl(ψ)) and V∃ = P(Cl(ψ))× {(⊥), (∧), (∨), (♦)} × Cl(ψ) and by putting

E(U) ={(U, (⊥),⊥) | ⊥ ∈ U} ∪ {(U, (∧), ψ1 ∧ ψ2) | ψ1 ∧ ψ2 ∈ U}∪
{(U, (∨), ψ1 ∨ ψ2) | ψ1 ∨ ψ2 ∈ U} ∪ {(U, (♦),♦ψ1) | ♦ψ1 ∈ U},

for U ∈ V∀ and

E(U,R, ψ) =


∅ if R = (⊥), ψ = ⊥
{(U \ {ψ1 ∧ ψ2}) ∪ {ψ1, ψ2}} if R = (∧), ψ = ψ1 ∧ ψ2

{(U \ {ψ1 ∨ ψ2}) ∪ {ψi} | i ∈ {1, 2}} if R = (∨), ψ = ψ1 ∨ ψ2

{{ψ | �ψ ∈ U} ∪ {φ1}} if R = (♦), ψ = ♦ψ1

for (U,R, ψ) ∈ V∃.

Player Élöıse wins an Abélard-node U in G(ψ) if for any sequence of rules from
{(⊥), (∧), (∨), (♦)} that Abélard chooses to repeatedly apply to U , Élöıse always can
choose a conclusion. In particular this means that Élöıse can avoid the situation that
Abélard can apply the (⊥)-rule. Then Abélard cannot force plays to reach nodes U ⊆ Cl(ψ)
with ⊥ ∈ U . Thus Élöıse wins the node {ψ} in G(ψ) if and only if there is a standard
tableau for ψ.
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Fact 2.5.2. Let ψ be a basic modal formula and let G(ψ) be defined as above. Then
Élöıse wins the node {ψ} in G(ψ) if and only if ψ is satisfiable and we have |W | ≤ 5n ·2n ∈
2O(n), where n = |ψ|.

Recalling the specification of winning regions of finite games, we have

Fact 2.5.3. A basic modal formula ψ is satisfiable if and only if {ψ} ∈ [[φ∃]] in G(ψ).

Remark 2.5.4. Basic modal formulas ψ can be seen as finite tracking automata with
single subformulas of ψ as states, where input words encode particular paths through
the syntax tree of ψ (for more information, see Definition 5.2.21); in these finite tracking
automata, conjunction states are nondeterministic and ⊥ is the only accepting state.
They can be determinized by means of the powerset construction for finite automata. The
finite satisfiability games from Definition 2.5.1 are played (essentially) over the carrier of
the determinized and then complemented tracking automaton. In Section 5.2.3 below
we extend the construction of satisfiability games via tracking automata to make use of
automata on infinite words. The resulting games can be used to decide the satisfiability
of (coalgebraic) µ-calculus formulas.

2.6 T -Coalgebras

We now recall some basic notions from category theory (see e.g. [33]) and universal
coalgebra (see e.g. [43]).

A category consists of a collection C of objects and a collection of morphisms (where
the collection of all morphisms between two objects A,B ∈ C is denoted by hom(A,B)C)
such that for each object A ∈ C, there exists the identity morphism idA and such that
the composition of morphisms is associative, i.e. (h ◦ g) ◦ f = h ◦ (g ◦ f). One important
example of a category is Set, i.e. the category that has sets as objects and for which the
collection hom(A,B) consists of all functions from set A to set B.

Given two categories, a (covariant) functor T : C→ D maps objects A ∈ C to objects
TA ∈ D and morphisms f ∈ hom(A,B)C to morphisms Tf ∈ hom(TA, TB)D such that
for each object X ∈ C, TidX = idTX and for all morphisms f : X → Y and g : Y → Z,
F (g ◦ f) = F (g) ◦F (f). In the case that C = D, a functor T : C → C is referred to as an
endofunctor. A contravariant functor T : C→ D maps morphisms f ∈ hom(A,B)C to
morphisms Tf ∈ hom(TB, TA)D while adhering to the condition that for all morphisms
f : X → Y and g : Y → Z, F (g ◦ f) = F (f) ◦ F (g). A contravariant functor T : C→ D
may also be understood as a covariant functor T : Cop → D where Cop denotes the dual
category of C (the category Cop is obtained from C by reversing the direction of all
morphisms and reversing the order of composition of morphisms). The composition T◦T ′ of
two compatible functors T : C→ D and T ′ : D→ E is defined by (T ◦T ′)(A) = T (T ′(A))
for objects A ∈ C and by (T ◦ T ′)(f) = T (T ′(f)) : (T ◦ T ′)(A) → (T ◦ T ′)(B) for
morphisms f : A → B. As an example, we observe that the powerset construction
extends naturally to a Set-endofunctor, the so-called (covariant) powerset functor with
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PX = P(X) for each set X and (Pf)B = f [B] ⊆ Y for each function f : X → Y and
each set B ⊆ X, where f [B] = {y ∈ Y | ∃b ∈ B. f(b) = y} denotes the image of B under
f . The contravariant powerset functor Q acts like P on sets but maps functions to the
respective preimage function, that is, (Qf)C = f−1[C] ⊆ X for f : X → Y , C ⊆ Y ,
where f−1[C] = {x ∈ X | f(x) ∈ C} denotes the preimage of C under f .

Definition 2.6.1 (T -Coalgebras). Let C be a category, and let T : C → C be an
endofunctor over C. A T -coalgebra A = (A,α) consists of an object A of C (the carrier)
and a morphism α : A → TA (the transition map, observation function or coalgebra
structure). For a ∈ A, we refer to α(a) as the A-observation of a. A homomorphism
between two T -coalgebras A = (A,α) and B = (B, β) is a morphism h : A → B such
that β ◦ h = (Th) ◦ α. A T -coalgebra Z = (Z, ζ) is called final if for each T -coalgebra
A = (A,α), there exists a unique homomorphism A→ Z.

Intuitively, the transition map describes the successor states and observations of
a state, organized in a data structure given by T . These data encode the observable
behaviour of a system, and morphisms of coalgebras preserve this behaviour.
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3 Satisfiability Checking for Coalgebraic Modal Logic

The notion of coalgebraic logic that is subject to our consideration in this chapter has been
introduced and elaborated on in [38,51]: For a fixed functor T , coalgebraic formulas are
interpreted over T -coalgebras and their modal semantics is defined by means of so-called
predicate liftings. This approach allows for the definition of coalgebraic satisfiability
games with ensuing generic complexity results (such as the PSpace-completeness of the
satisfiability problems of all rank-1 axiomatizable modal logics [50]). Another way to
define logics for coalgebras – by means of so-called relation liftings – was introduced
in [35]; we do not pursue this approach here.

3.1 Coalgebraic Modal Logic

We swiftly recall the established foundations of coalgebraic modal logic defined by means
of predicate liftings [38,51].

Definition 3.1.1 (Predicate lifting). A modal similarity type is a set Λ of modal
operators ♥, each with a finite arity assigned to it. We write ♥n to indicate that ♥ ∈ Λ
has arity n. Given a Set-endofunctor T : Set→ Set and a modal operator ♥n, an n-ary
T -predicate lifting [[♥]] is a natural transformation

[[♥]] : Qn → Q ◦ T op,

i.e. [[♥]] denotes a family of mappings ([[♥]]C : (PC)n → PTC)C∈Set such that the
diagram

(PC)n
[[♥]]C // PTC C

f

��
(PB)n

[[♥]]B //

(f−1)n

OO

PTB

Tf−1

OO

B

commutes for each function f : C → B, i.e. [[♥]]C ◦ (f−1)
n

= Tf−1 ◦ [[♥]]B.

We fix a Set-endofunctor T : Set → Set and a modal similarity type Λ such that

there is for each ♥n ∈ Λ a dual modal operator ♥n ∈ Λ with the property that ♥n = ♥n.
Furthermore, we assume that each ♥n ∈ Λ comes along with an n-ary T -predicate lifting

[[♥]] such that for all C and B ⊆ C, we have [[♥]]C(B) = [[♥]]C(B).

Definition 3.1.2 (Coalgebraic formulas). The set CML(Λ) of coalgebraic modal for-
mulas over Λ is defined by the grammar

CML(Λ) 3 ψ1, . . . , ψn ::= > | ⊥ | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ♥(ψ1, . . . , ψn) ♥n ∈ Λ
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The size |φ| of a coalgebraic formula φ ∈ CML(Λ) is just its length over the alphabet
{>,⊥,∧,∨} ∪ Λ.

While coalgebraic formulas do not contain explicit negation, the dual of formulas can be
defined as an abbreviated notion, as we will see.

Definition 3.1.3 (Coalgebraic satisfaction). Given a T -coalgebra C = (C, ξ), we
refer to C as a coalgebra model (or model for short) and define the satisfaction of
coalgebraic modal formulas φ ∈ CML(Λ) by putting, for x ∈ C, C, x |= φ if and only if
x ∈ [[φ]]C where [[φ]]C is the extension (or truth set) of φ in C and is defined inductively
by putting

[[>]]C = C [[⊥]]C = ∅
[[ψ1 ∧ ψ2]]C = [[ψ1]]C ∩ [[ψ2]]C [[ψ1 ∨ ψ2]]C = [[ψ1]]C ∪ [[ψ2]]C

[[♥(ψ1, . . . , ψn)]]C = ξ−1[[[♥]]C([[ψ1]]C , . . . , [[ψn]]C)],

where ♥ ∈ Λ is an n-ary modal operator and ξ−1 : P(TC)→ P(C) denotes the preimage
function for ξ and is defined by ξ−1[A] = {x | ξ(x) ∈ A} for A ∈ P(TC). We write [[φ]]
for [[φ]]C if no confusion arises.

For x ∈ C and ψ ∈ CML(Λ) we thus have x ∈ [[♥(ψ1, . . . , ψn)]]C if and only if ξ(x) ∈
[[♥]]C([[ψ1]]C , . . . , [[ψn]]C).

Definition 3.1.4. Given a coalgebraic modal formula ψ, we define its dual ψ inductively
by putting

> = ⊥ ⊥ = >
ψ1 ∧ ψ2 = ψ1 ∨ ψ2 ψ1 ∧ ψ2 = ψ1 ∧ ψ2

♥(ψ1, . . . , ψn) = ♥ (ψ1, . . . , ψn)

and then have x ∈ [[ψ]] if and only if x /∈ [[ψ]] (for (C, ξ) a T -coalgebra and x ∈ C).

Remark 3.1.5. Propositional atoms can be added to a coalgebraic modal logic by
changing the functor T to P(P )× T where P denotes a set of propositional atoms and
by defining the semantics of atoms p ∈ P by

[[p]]C = {x ∈ C | ξ(x) = (Q, y), p ∈ Q ⊆ P}

where C = (C, ξ) is a P(P )× T -coalgebra.

Definition 3.1.6 (Satisfiability, validity). A coalgebraic formula φ is valid if for
each T -coalgebra (C, ξ) and each state x ∈ C, x ∈ [[φ]] and φ is satisfiable if there is a
T -coalgebra (C, ξ) and a state x ∈ C, such that x ∈ [[φ]].
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Fact 3.1.7. A coalgebraic formula φ is satisfiable if and only if φ is not valid.

For the most part, we restrict the scope of the technical developments in this work
to unary modal operators, noting that the presented constructions and proofs naturally
generalize to modal operators of arbitrary finite arity.

Example 3.1.8. We consider sets of predicate liftings for several functors (see e.g. [51]).

1. The least normal modal logic K (without atoms) is obtained by using Kripke frames,
that is, coalgebras for the covariant powerset functor P, as models. The according
modal similarity type contains just the unary modal operators � and ♦, i.e. we put
Λ = {�1,♦1} and the modal semantics is obtained by defining the predicate liftings

[[�]]C(B) = {A ∈ P(C) | A ⊆ B}
[[♦]]C(B) = {A ∈ P(C) | A ∩B 6= ∅}

for sets B and C with B ⊆ C.
2. The modal logic KD uses the same modal operators � and ♦ as K but is interpreted

over serial Kripke frames. The coalgebraic semantics of KD thus can be defined by
putting T = P+, where P+ is the non-empty powerset functor defined by P+(C) =
{A ∈ P(C) | A 6= ∅} for sets C and P+(f) = P(f) for functions f . The according
predicate liftings are defined by

[[�]]C(B) = {A ∈ P+(C) | A ⊆ B}
[[♦]]C(B) = {A ∈ P+(C) | A ∩B 6= ∅}

for sets B and C with B ⊆ C.
3. Classical modal logic [6] can be modelled by using neighbourhood frames [22] as

models, that is, coalgebras C = (C, ξ) for the neighbourhood functor N = Q ◦ Q. We
put Λ = {�1,♦1} and

[[�]]C(B) = {α ∈ N (C) | ∃A ∈ α.A ⊆ B}
[[♦]]C(B) = {α ∈ N (C) | ∀A ∈ α.B ∩A 6= ∅}

for sets B and C with B ⊆ C.
4. The coalgebraic semantics of monotone modal logic M [6] is obtained by putting
T = UpP where UpP denotes the subfunctor of N that assigns the set of upwards
closed subsets of P(C) to sets C so that UpP-coalgebras C = (C, ξ) are monotone
neighbourhood frames [22]. Again we have the modal operators ♦ and � and define
the predicate liftings

[[�]]C(B) = {α ∈ UpP(C) | ∃A ∈ α.A ⊆ B}
[[♦]]C(B) = {α ∈ UpP(C) | ∀A ∈ α.B ∩A 6= ∅}

for sets B and C with B ⊆ C.
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3.1 Coalgebraic Modal Logic

5. Hennessy-Milner logic HML (also known as multi-modal K) may be obtained by
using the functor H(C) = P(A× C) provided that A is a set of actions. Coalgebras
for this functor are labelled transition systems with set of labels A. We have modal
operators �a and ♦a for each a ∈ A and their semantics is given by

[[�a]]C(B) = {S ∈ H(C) | Sa ⊆ B}
[[♦a]]C(B) = {S ∈ H(C) | Sa ∩B 6= ∅}

for sets B and C with B ⊆ C, where Sa = {x ∈ C | (a, x) ∈ S}.
6. Pauly’s coalition logic [41]: Let N = {1, . . . , n} denote a set of agents. Coalitions D are

then subsets of N , i.e. D ⊆ N . We define the modal similarity type Λ = {[D]1, 〈D〉1 |
D ⊆ N}, i.e. each coalition induces two unary modal operators. A suitable functor
(modulo size issues) is given by the definition G(C) = {(S1, . . . , Sn, f) | ∅ 6= Si ∈
Set, f :

∏
i∈N Si → C} so that G assigns to a set C tuples consisting of n non-empty

sets Si, so-called strategies and of an outcome function f . Coalgebras for this functor
are in one-to-one correspondence to so-called game frames [41]. Each coalition D
induces sets SD =

∏
i∈D Si and SD =

∏
i∈D Si such that for sD ∈ SD and sD ∈ SD,

(sD, sD) is an element of
∏
i∈N Si. This enables the definition of predicate liftings for

[D] and 〈D〉 by

[[[D]]]C(B) = {(S1, . . . , Sn, f) ∈ G(C) | ∃sD ∈ SD.∀sD ∈ SD.f(sD, sD) ∈ B}
[[〈D〉]]]C(B) = {(S1, . . . , Sn, f) ∈ G(C) | ∀sD ∈ SD.∃sD ∈ SD.f(sD, sD) ∈ B}

for sets B and C with B ⊆ C and D ⊆ N . Formulas [D]φ then express that “coalition
D can enforce φ” while formulas 〈D〉φ state that “coalition D cannot prevent φ”.

7. Probabilistic modal logic [32,26]: We put Λ = {Lp,Mp | p ∈ [0, 1] ∩ Q}. The finite
distribution functor Dω maps sets C to the set of probability distributions over C
with finite support. Dω-coalgebras are so-called probabilistic type spaces with finite
branching degree and we define predicate liftings

[[Lp]]C(B) = {P ∈ Dω(C) | P (B) ≥ p}
[[Mp]]C(B) = {P ∈ Dω(C) | P (B) < p}

for sets C and B ⊆ C and for p ∈ [0, 1] ∩ Q, where P (B) =
∑

x∈B P (x). Formulas
Lpφ express that “with probability at least p, φ holds in the next step”.

8. Basic conditional logic CK [6]: We have two binary modal operators ⇒ and > and
define the functor CK by CK(C) = {f : Q(C)→ P(C)}. It maps a set C to the set of
selection functions f : P(C)→ P(C) so that CK-coalgebras are standard conditional
frames. The according binary predicate liftings are defined by

[[⇒]]C(A,B) = {f ∈ CK(C) | f(A) ⊆ B}
[[>]]C(A,B) = {f ∈ CK(C) | f(A) ∩B 6= ∅}

for sets A,B and C with A ⊆ C and B ⊆ C. Formulas ψ ⇒ φ then state that “if ψ
holds, then usually φ holds”.
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Further examples of basic coalgebraic logics may be found in [51] (e.g. majority
logic, an extension of graded modal logic) and [52] (e.g. CKCM, CKID, and CKCEM,
the extensions of CK with the cautious monotonicity axiom, the identity axiom and
the conditional excluded middle axiom, respectively; System S ). Furthermore, new coal-
gebraic logics may obtained by the modular combination of single coalgebraic logic
features [8], [47].

3.1.1 One-step Rules

Initially, coalgebraic modal logic was limited to so-called rank-1 logics, that is, logics that
can be axiomatized by formulas in which all modal operators have nesting depth exactly
1 [46]. It has since been extended to more general non-iterative logics [49] and, to some
degree, to iterative logics, axiomatized by formulas with nested modalities [48]. In the
rank-1 setting, it has been shown in [46] that all logics can be axiomatized by so-called
one-step rules (φ/ψ), where φ is purely propositional and ψ is a clause over formulas of
the form ♥(a1, . . . , an), where the ai are propositional variables. In [39], one-step sequent
rules have been used to obtain a generic sequent calculus for coalgebraic modal logics.
The satisfiability games for coalgebraic (fixpoint) logics that we introduce in Sections 3.2
and 5.2 use tableau rules instead and hence rely on the dual concept of so-called one-step
tableau rules [16] to encode the syntactic properties that characterize the satisfiability of
coalgebraic formulas.

Definition 3.1.9 ((One-step) Tableau rules). Let B be a set of rule variables, let
Λ(B) = {♥b | b ∈ B,♥ ∈ Λ} denote the set of one-step formulas over B and let Prop(B)
denote the set of propositional formulas overB. A CML(Λ)-substitution σ : B → CML(Λ)
is a function that maps rule variables to coalgebraic formulas. Then a propositional
tableau rule R = (Γ0/Σ) consists of the premise, a set Γ0 ⊆ Prop(B) of propositional
formulas over B, and the conclusion, a set Σ = {Γ1, . . . , Γl} ⊆ P(B). A one-step tableau
rule R = (Γ0/Σ) has a set Γ0 ⊆ Λ(B) of one-step formulas as premise and a set
Σ = {Γ1, . . . , Γl} ⊆ P(B) as conclusion. Rules are clean if their premises mention every
variable at most once.

Definition 3.1.10 (Rule applications). Let R be a set of tableau rules and let R =
(Γ0/Γ1, . . . , Γl) ∈ R be a tableau rule. A CML(Λ)-substitution σ : B → CML(Λ) induces
the rule application (Γ0σ/Γ1σ, . . . , Γlσ) (sometimes denoted by just the data (R, σ)).
Given a set of formulas Γ ⊆ CML(Λ), the rule application (Γ0σ/Γ1σ, . . . , Γlσ) matches
Γ if Γ0σ ⊆ Γ . For a set R of (propositional or one-step) tableau rules, we define the list

R(Γ ) = ((R1, σ1), . . . , (Rn, σn))

of rule applications that match Γ , where Ri = (Γ0/Γ1, . . . , Γl) ∈ R and Γ0σi ⊆ Γ for
1 ≤ i ≤ n, and the set of conclusions of rule applications to Γ by

Cn(Γ ) = {{Γ1σ, . . . , Γlσ} | ((Γ0/Γ1, . . . , Γl), σ) ∈ R(Γ )}.
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3.1 Coalgebraic Modal Logic

Definition 3.1.11 (Propositional tableau rules). We fix a set of rule variables B
and define the set Rprop of propositional tableau rules as follows (for a, b ∈ B):

(⊥)
⊥

(∧)
a ∧ b
a, b

(∨)
a ∨ b
a b

In the context of sequent calculi [39] and tableau systems [16], the concept of one-step
soundness and completeness relates provability and satisfiability, respectively, to the
syntactic conditions that one-step rules impose. We define the tableau variants of one-step
soundness and completeness.

Definition 3.1.12 (One-step tableau soundness / completeness). Let T be a
Set-endofunctor and let C be a set. Given a set Γ ⊆ B of rule variables, we define the
extension [[Γ ]]Cτ of Γ under a P(C)-substitution τ : B → P(C) by [[Γ ]]Cτ =

⋂
b∈Γ τ(b).

The one-step extension of a set Γ ⊆ Λ(B) of one-step formulas under τ is defined by
[[Γ ]]TCτ =

⋂
♥a∈Γ [[♥]]C(τ(a)). For Γ ⊆ Λ(B) we thus have [[Γ ]]TCτ ⊆ TC.

A set of one-step tableau rules R is one-step tableau complete if for all sets C, all
P(C)-substitutions τ : B → P(C) and all R = (Γ0/Γ1, . . . , Γl) ∈ R,

if [[Γi]]Cτ 6= ∅ for some 1 ≤ i ≤ l, then [[Γ0]]TCτ 6= ∅.

A single one-step tableau rule R = (Γ0/Γ1, . . . , Γl) is one-step tableau sound if there is,
for all sets C, all sets Γ ⊆ Λ(B) of one-step formulas, all P(C)-substitutions τ : B → P(C)
with [[Γ ]]TCτ 6= ∅, and all renamings σ : B → B with Γ0σ ⊆ Γ , some 1 ≤ i ≤ l such that
[[Γiσ]]Cτ 6= ∅. A set of one-step tableau rules R is one-step tableau sound if each rule
R ∈ R is one-step tableau sound.

Example 3.1.13. We consider one-step tableau sound and one-step tableau complete
sets of tableau rules for some of the coalgebraic logics detailed in Example 3.1.8. The
sets of one-step rules for M, K, KD and HML are as follows:

(M)
�a,♦b

a, b

(K)
�b1, . . . ,�bn,♦b

b1, . . . , bn, b

(KD)
�b1, . . . ,�bn,♦b

b1, . . . , bn, b

�b1, . . . ,�bn
b1, . . . , bn,
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(HML)
�ab1, . . . ,�abn,♦ab

b1, . . . , bn, b
a ∈ A

The rule scheme for probabilistic modal logic is more involved. For a given formula
φi and ri ∈ Z and for all i ∈ I and k ∈ Z we define∑

i∈I
riφi ≥ k ≡

∧
J⊆I,r(J)<k

(
∨
j∈J

φj ,
∨
j /∈J

¬φj),

where r(J) =
∑

j∈J rj . Furthermore, we use
∑
ai ≤

∑
bj as an abbreviation for

∑
bj −∑

ai ≥ 0. The rule scheme for probabilistic modal logic then is

(P)

n∧
i=0

sgn(ri)Lpiai∑n

i=0
riai A

∑n

i=0
ripi

,

where n ≥ 0, r0, . . . , rn ∈ Z \ {0}.
All sets of rules from this example (or the respective dual sets of sequent rules) have

been shown to be one-step (sequent) sound and complete ([39,16,40]).

3.2 Satisfiability Games for Coalgebraic Modal Logic

We adapt the finite satisfiability games from Definition 2.5.1 to the more general setting
of basic coalgebraic modal logic. To this end we fix a functor T , a modal similarity type
Λ (along with a predicate lifting for each modal operator) and a one-step sound and
one-step complete set of one-step tableau rules Rm and put R = Rm ∪Rprop.

Definition 3.2.1 (Satisfiability games for coalgebraic modal logic). Let ψ be a
coalgebraic modal formula. We define the closure of ψ by

Cl(ψ) = {φ ∈ CML(Λ) | φ is a subformula of ψ},

noting |Cl(ψ)| ≤ |ψ|. Furthermore, we assume a set code(ψ) that contains for each rule
application (R, σ) with R ∈ R and σ : B → Cl(ψ) a code code(R, σ) (also denoted just
by (R, σ), if no confusion arises) that identifies the rule application. The satisfiability
game G(ψ) = (V,E) for ψ is a finite two-player game defined by putting V = V∃ ∪ V∀
where V∀ = P(Cl(ψ)) and V∃ = P(Cl(ψ))× code(ψ) and by putting

E(U) ={(U, (R, σ)) | (R, σ) ∈ R(U)}

for U ∈ V∀ and

E(U, (R, σ)) = {Γjσ | R = (Γ0/Γ1, . . . , Γl), 1 ≤ i ≤ l}

for (U, (R, σ)) ∈ V∃.
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Player Élöıse wins an Abélard-node U in G(ψ) if for any sequence of matching ap-
plications of rules from R that Abélard chooses to apply repeatedly, starting at U ,
Élöıse always can choose conclusion nodes. As the rule applications reduce the sizes of
formulas, Abélard can only make finitely many choices and if Élöıse wins a play, then
Abélard eventually cannot apply any more rules.

Lemma 3.2.2. Let ψ be a coalgebraic modal formula and let G(ψ) be defined as above.
Then Élöıse wins the node {ψ} in G(ψ) if and only if ψ is satisfiable.

Winning strategies for Élöıse in the G(ψ) essentially define tableaux for ψ and a model
can be built over (the states of) tableaux. For now, we refrain from introducing the
necessary notation and proving the Lemma in detail, as it is a direct consequence of
the more general results that we prove in Chapter 5 below. In [39], an equivalent result
(regarding the validity of formulas) was shown for a generic coalgebraic sequent calculus.

Again the winning region of Élöıse in G(ψ) can be specified by the µ-calculus formula

φ∃ = µX. ((∀ ∧�EX) ∨ (∃ ∧ ♦EX)).

Definition 3.2.3 (PSpace-tractability, ExpTime-tractability [39,51]). Let R be
a set of one-step tableau rules over a set of rule variables B. Let P denote an alphabet
and let code : R × {σ : B → CML(Λ)} → P ∗ be a coding function, assigning a
string code(R, σ) over P to every rule application (R, σ). Then R is PSpace-tractable
(ExpTime-tractable) if there exists a polynomial function p such that for all sets Γ ⊆
CML(Λ) and all rule applications (R, σ) ∈ R(Γ ), |code(R, σ)| ≤ p(|Γ |) (where |w|
denotes the length of the string w) and if it can be decided in NP (ExpTime),

1. whether c = code(R, σ) for a given word c ∈ P ∗ and
2. whether (R, σ) ∈ R(Γ ) for a given rule application (R, σ).

Under the assumption of PSpace-tractability, the generic sequent calculus from [40]
has been shown to yield a decision procedure that realizes validity checking for coalge-
braic logics in PSpace. We recover this result for the satisfiability problem, using the
satisfiability games that we defined in this section.

Theorem 3.2.4. The satisfiability problem for coalgebraic modal logics with PSpace-
tractable one-step sound and one-step complete sets of tableau rules is contained in
PSpace.

Proof. Let ψ be a coalgebraic modal formula and let R be a PSpace-tractable one-step
sound and one-step complete set of tableau rules. The PSpace-tractability of R implies
that the moves that Abélard or Élöıse have at a given node in the satisfiability game can
be computed in NP. The set φ∃ can thus be computed in time exponential in n = |ψ|;
as runs in G(ψ) are of length at most n and it suffices by finiteness of plays to store
a single play at a time when computing the winner of G(ψ), this computation can be
implemented using space polynomial in n (at most n nodes have to be visited before a
play ends and each node can be store in space polynomial in n). �
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4 Automata on Infinite Words and Infinite Games

In this chapter, we introduce various types of automata on infinite words and infinite
games (see e.g. [21] for an overview) along with determinization methods for several
types of automata. Some of the determinization procedures are novel and rely on syn-
tactic properties such as limit-linearity and limit-determinism of the input automata
to yield asymptotically smaller determinized automata than e.g. Miyano/Hayashi con-
struction [34] that works for unrestricted Co-Büchi automata or the Safra/Piterman
construction [42,44] that works for unrestricted Büchi automata. In Section 4.3, we show
that several algorithmic problems for automata and games (such as the emptiness problem
for automata or computing the winning regions in two-player games) can be seen as
model checking problems for the relational µ-calculus.

4.1 Automata on Infinite Words

First, we define deterministic and nondeterministic variants of several types of automata
on infinite words.

Definition 4.1.1 (Automata on infinite words). A finite Büchi automaton is a fi-
nite automaton A = (V,Σ,∆, v0, F ) with set F ⊆ ∆ of accepting transitions that runs
on infinite words. We use accepting transitions instead of accepting states to obtain
slightly smaller automata in several constructions; this is standard in recent work (see
e.g. [12]) and automata with accepting transitions can be transformed to equivalent
automata with accepting states with linear blow-up in the number of priorities (see
below). Given an infinite word w = w0w1 . . . ∈ Σω, an infinite run of A on w is a sequence
ρ = v0v1 . . . ∈ V ω such that for all i ≥ 0, vi+1 ∈ ∆(vi, wi); we denote the set of all infinite
runs of the automaton A on a word w starting at a state v by run(A, v, w) (or just by
run(A, w) if v = v0). Given an infinite run ρ ∈ run(A, w), we define the sequence trans(ρ)
of its transitions by

(trans(ρ))(i) = (ρ(i), w(i), ρ(i+ 1))

for i ≥ 0. We define the projections π1, π3 : ∆→ V , π2 : ∆→ Σ by

π1(v, a, w) = v π2(v, a, w) = a π3(v, a, w) = w

for (v, a, w) ∈ ∆. The language L(A) that is recognized by a Büchi automaton A is

L(A) = {w ∈ Σω | ∃ρ ∈ run(A, w). Inf(trans(ρ)) ∩ F 6= ∅},

where, for all sets C and all functions f : N→ C,

Inf(f) = {c ∈ C | ∀i.∃j ≥ i. f(j) = c}



4.1 Automata on Infinite Words

denotes those elements from C that occur infinitely often in f ; thus Büchi automata
accept exactly those words for which there is a run that uses at least one accepting
transition infinitely often. Similarly, Co-Büchi automata A = (V,Σ,∆, v0, F ) accept
infinite words for which there is a run in which only accepting transitions are used
infinitely often; formally, the Co-Büchi automaton A accepts the language

L(A) = {w ∈ Σω | ∃ρ ∈ run(A, w). Inf(trans(ρ)) ⊆ F},

i.e. every accepting run uses only transitions from F from some point on. Parity automata
A = (V,Σ,∆, v0, α) generalize both Büchi and Co-Büchi automata by allowing an
acceptance function α : ∆ → {0, 1, . . . , k − 1}, where k is the number of priorities of
the automaton; hence α assigns a priority α(t) to each transition t ∈ ∆. The index
idx(A) = max{α(t) | t ∈ ∆}+ 1 of a parity automaton A is the span of its priorities, e.g.
the index of Co-Büchi automata with at least one non-accepting state is 2. The function
α partitions ∆ into disjoint sets

∆i := {t ∈ ∆ | α(t) = i},

for 0 ≤ i < k. We also define the sets

∆≤i = {t ∈ ∆ | α(t) ≤ i}.

The acceptance condition of parity automata requires the existence of a run for which
the highest priority that occurs infinitely often is even; that is, for a parity automaton A,
we put

L(A) = {w ∈ Σω | ∃ρ ∈ run(A, w). max(Inf(α ◦ trans(ρ))) is even}.

Thus a parity automaton with the two priorities 0 and 1 is a Co-Büchi automaton (with
F = ∆0, F = ∆1) while a parity automaton with the two priorities 1 and 2 is a Büchi
automaton (with F = ∆2, F = ∆1).

The defined automata on infinite words are existential in the sense that they accept
words for which an accepting run exists. However, sometimes it is convenient to use
universal automata, that is, automata that accept words for which all runs are accepting.
Furthermore, the defined PA are maximal in the sense that they accept runs in which
the maximal priority that occurs infinitely often is even; the dual concept of minimal
priority automata is obtained by the acceptance condition that the minimal priority that
occurs infinitely often is even.

Definition 4.1.2. Given two states v, w ∈ V and a letter a ∈ Σ, we refer to a transition
(v, a, w) as an a-transition and to w as an a-successor of v. Given a state v ∈ V , sets of
transitions β, γ ⊆ ∆, a transition t ∈ ∆ and a letter a ∈ Σ, we put

Idγ = {(u, b, w) ∈ γ | w = u} γ|a = {(u, b, w) ∈ γ | a = b}
γ|v,a = {(u, b, w) ∈ γ | u = v, b = a} γ|t,a = {(u, b, w) ∈ γ | u = π3(t), b = a}

γ|t =
⋃
a∈Σ

γ|t,a γ|β,a =
⋃
t∈β

γ|t,a
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4.1 Automata on Infinite Words

We use ε to denote the empty word. For a finite word w = a0 . . . an, we recursively define
γ|β,ε = β and γ|β,w = γ|(γ|β,a0 ),a1...an , the latter being the set of transitions that are
reachable starting from transitions from β via the word w while using only transitions
from γ. Furthermore, we define the set of transitions that are reachable from a set of
transitions β ⊆ ∆ by using transitions from γ ⊆ ∆ as

reachγ(β) =
⋃

w∈Σ∗
γ|β,w.

We have reachγ(β) ⊆ γ. If γ = ∆, then we omit the subscripts. Given a function f : N→ C
for some set C, we denote the sequence f(0) . . . f(i) by pre(f, i) and the sequence
f(i+ 1)f(i+ 2) . . . by post(f, i). The concatenation f ; g of functions f : {0, . . . , n} → C
and g : N→ C is defined by

(f ; g)(i) =

{
f(i) i ≤ n
g(i) i > n

Then we have for all f : N → C and i ∈ N that pre(f, i); post(f, i) = f . These generic
notions instantiate to infinite words w : N → Σ, runs σ : N → V and sequences of
transitions trans(σ) : N→ ∆. A set γ ⊆ ∆ of transitions is deterministic if for all a ∈ Σ,
γ|a is a partial function. An automaton A on infinite words is deterministic if ∆ is
deterministic; the transition relation in deterministic automata hence is a partial function
∆ : V ×Σ ⇀ V (since such automata can be transformed to equivalent automata with
total transition function, this definition suffices for purposes of determinization). For
deterministic automata, we usually write δ instead of ∆.

We use the abbreviations NCBA, DCBA, NBA, DBA, NPA and DPA to denote the
(non)deterministic variants of Co-Büchi, Büchi and parity automata, respectively. For
Büchi automata, we assume w.l.o.g. that every accepting transition is part of a cycle
(otherwise it cannot occur infinitely often in any run); for Co-Büchi automata we assume
w.l.o.g. that every accepting transition is part of an F -cycle, that is, a cycle formed
exclusively by transitions from F (otherwise the transition cannot be part of an accepting
run). For general PA, we assume that for even l, every transition t ∈ ∆l is part of a
∆≤l-cycle and can be part of an accepting run. It is a standard result (see e.g. [21]) that
NBA, DPA, and NPA all are equally expressive and that such automata recognize a
language L if and only if L is an ω-regular language; NCBA, DCBA and DBA however
all are strictly less expressive than NBA.

4.1.1 Limit Properties of Automata

We define the concepts of limit-determinism, limit-linearity and limit-stationarity of
automata. In such automata, all accepting runs are deterministic, linear or stationary
from some point on.

Limit-determinism of automata is defined as a semantic property.
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4.1 Automata on Infinite Words

Definition 4.1.3 (Limit-deterministic PA). A PA A = (V,Σ,∆, v0, α) is limit-
deterministic if there is, for each word w and each accepting run ρ ∈ A(w), a number i
such that for all j ≥ i,

(∆≤l)|ρ(j),w(j) = {(trans(ρ))(j)},

where l = max(Inf(α ◦ trans(ρ))) is even.

If A is a BA, then we have max(Inf(α ◦ trans(ρ))) = 2 for every accepting run ρ; as
∆≤2 = ∆ in BA, the constraint in the above definition instantiates to requiring the
existence of a number i such that for all j ≥ i, ∆|ρ(j),w(j) = {(trans(ρ))(j)}. For CBA we
have max(Inf(α ◦ trans(ρ))) = 0 for every accepting run ρ; as ∆≤0 = F , the constraint
requires a number i such that for all j ≥ i, F |ρ(j),w(j) = {(trans(ρ))(j)}.

Definition 4.1.4 (Compartments). Given a PA A = (V,Σ,∆, u0, α) with k priorities,
and an even number l ≤ k, the l-compartment Cl(t) of a transition t ∈ ∆l is the set
reach∆≤l(t), that is, the set of transitions that are reachable from π3(t) without using
transitions with priority higher than l. If l is irrelevant, we refer to l-compartments just
as compartments. The size of a compartment C is just |π3[C]|.

Note that the union of all l-compartments is reach∆≤l(∆l). By definition, every accepting
run ρ of a parity automaton eventually stays inside one of the compartments of the
automaton, say C, i.e. we have Inf(trans(ρ)) ⊆ C.

Fact 4.1.5. Let q ≤ |V | be the number of states on which the largest compartment in a
PA A is based. Then every accepting run of A visits at most q states infinitely often.

Each compartment in the tracking automata that we define in Chapter 5 consists of
formulas that belong to a single least fixpoint literal, having the intuition that accepting
runs of these automata stay in the compartment for some least fixpoint from some point
on, i.e. that the respective least fixpoint is unfolded infinitely often.

Compartments allow for a syntactic characterization of limit-determinism:

Fact 4.1.6. A PA is limit-deterministic if and only if all its compartments are deter-
ministic.

Proof. Let A be a limit-deterministic PA with alphabet Σ and acceptance function α,
let C be an l-compartment for some even l, let v ∈ C and let a ∈ Σ. We have to show
that |{u | (v, a, u) ∈ C}| ≤ 1. As all transitions (v, a, u) ∈ C are part of a ∆≤l-cycle,
there is a word w and an accepting run ρ ∈ run(A, w)) such that trans(ρ) contains
(v, a, u) infinitely often. By limit-determinism of A, there is some i such that for all j ≥ i,
(∆≤l)|ρ(j),w(j) = {(ρ(j), w(j), ρ(j + 1))}. Considering some position j′ ≥ j with ρ(j′) = v,
w(j′) = a, we have |{u | (v, a, u) ∈ C}| ≤ |(∆≤l)|ρ(j′),w(j′)| = |{(v, w(j′), ρ(j′+1))}| =≤ 1,
as required. For the converse direction, let all compartments in A be deterministic, let w
be a word and let ρ ∈ run(A, w) be accepting so that l = max(Inf(α ◦ trans(ρ))) is even
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4.1 Automata on Infinite Words

and there is some position i such that for all j ≥ i, we have α((trans(ρ))(j)) ≤ l. From
i on, ρ stays in the l-compartment C := Cl(trans(ρ(i))), i.e. we have that for all j′ ≥ i,
trans(ρ(j′)) ∈ C. By assumption, C is deterministic so that we have for all j ≥ i that
|{u | (ρ(j), w(j), u) ∈ C}| ≤ 1 and hence (∆≤l)|ρ(j),w(j) = {trans(ρ(j))}, as required. �

Fact 4.1.6 specializes to BA where we have ∆0 = ∅, ∆≤2 = ∆ and ∆2 = F . The
union of all 0-compartments is the empty set and that of all 2-compartments is reach(F );
thus a BA is limit-deterministic if and only if reach(F ) is deterministic (see e.g. [12]).
Such Büchi automata (with accepting states instead of transitions) are also called semi-
deterministic [9]. For CBA, there is just one even priority 0 and we have ∆0 = ∆≤0 = F ;
the union of all 0-compartments is reachF (F ) = F . Thus a CBA is limit-deterministic if
and only if F is deterministic.

Corollary 4.1.7. It is decidable in polynomial time whether a given automaton is limit-
deterministic.

We define the following related semantic notion for Co-Büchi automata:

Definition 4.1.8 (Limit-linear CBA). Let A = (V,Σ,∆, v0, F ) be a CBA. A set
γ ⊆ ∆ of transitions is linear if for all t ∈ γ, |π3[γ|t \ Idγ ]| = 1. A letter a ∈ Σ is a
progressing letter (in A) if there is no transition (v, a, v) ∈ ∆. A synchronizing state is
a state v ∈ π3[F ] such that there is some progressing letter a ∈ Σ such that v has an
a-successor. A pair of letters (a1, a2) ∈ Σ2 (referred to as choice letters) with a1 6= a2 is
a choice pair (in A) if there is exactly one state v ∈ V that has an a1- or a2-successor
and we have

∆(v, a1) = {u1} ∆(v, a2) = {u2}

with u1 6= v 6= u2, and for all b ∈ Σ such that a1 6= b 6= a2, there is no transition
(v, b, w) ∈ ∆ with w 6= v. For all transitions t ∈ ∆ \ F and t′ = (π3(t), a, v) ∈ F , t′ is an
entry transition for its compartment C(t′). The CBA A is limit-linear if and only if F is
linear, every compartment C of A contains at least one synchronizing state and at most
one entry transition, denoted by tC if it exists, and for all compartments C with entry
transition and all transitions (u, a, π1(tC)) ∈ C with u 6= π1(tC), a is progressing, i.e. the
entry transition of C can only be reached within C via a transition for a progressing letter
(or via a trivial loop). Furthermore, we require that there is, for each v ∈ π3[F ] and all
non-progressing a ∈ Σ such that a is not a choice letter, some transition (v, a, w) ∈ F . A
limit-stationary CBA is a limit-linear CBA in which each compartment contains exactly
one synchronizing state.

In the tracking automata defined in Section 5.2.2 below, individual compartments
correspond to individual least fixpoint literals, the progressing letters are such letters that
encode applications of modal rules, the choice letters are letters that encode applications
of the disjunction rule, and entry transitions unfold fixpoint literals.
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4.1 Automata on Infinite Words

Definition 4.1.9 (Uniform and synchronizing acceptance). Let A be a limit-
linear CBA with set of progressing letters P and set Q of pairs of choice letters. An
infinite word w is progressing (in A) if it contains infinitely many progressing letters, i.e.
there is, for all i, some j ≥ i such that w(j) ∈ P . The automaton A admits progressing
runs if each of its compartments contains at least one synchronizing state. A progressing
word w ∈ Σω is uniform (in A) if for all i < j such that w(i) and w(j) are progressing
letters and the finite word w(i+ 1) . . . w(j − 1) contains no progressing letter, we have
that for all choice pairs (a1, a2) ∈ Q, the word w(i + 1) . . . w(j − 1) contains at most
one of the letters a1 or a2. An infinite word w is synchronizing (in A) if for all i such
that w(i) ∈ P , we have that for all runs ρ ∈ run(A, w), ρ(i) is a synchronizing state. Let
Σ̃ω ⊆ Σω denote the set of all uniform and synchronizing words. Given an automaton A,
we define the uniform and synchronizing language that is accepted by A by

L̃(A) = L(A) ∩ Σ̃ω.

Definition 4.1.10 (Circular permutation). Let U be a set. A bijection f : U → U
on U is a circular permutation if there is, for all x, y ∈ U , a number n ≤ |U | such that
x = fn(y). States from π3[C] for some compartment C in a limit-linear CBA are arranged
linearly by the circular permutation fC : π3[C] → π3[C] defined by fC(v) = w, where
w is the state with v 6= w for which there is a transition (v, a, w) ∈ F . Given some
compartment C such that π3[C] contains at least one synchronizing state and given
some state v ∈ π3[C], we use sync(v) to denote the synchronizing state w ∈ π3[C] with

the property that there is no q′ < q such that f q
′

C (v) is a synchronizing state, where q
is the least number with f qC(v) = w. In particular, if sync(v) = u for states v, u ∈ V ,
then there is some compartment C such that v, u ∈ π3[C]. For a state v ∈ V for which
there is no compartment C such that v ∈ π3[C], we leave sync(v) undefined. We also
define nextsync(v) = sync(f(sync(v))). Additionally, we assume a circular permutation on
compartments, i.e. a suitable bijection g : {1, . . . , q} → {1, . . . , q}, where the automaton
at hand has q disjoint compartments C1, . . . , Cq. Further we define a fixed function
nextcomp : V → V that maps, for all 1 ≤ i ≤ q, each state v ∈ π3[Ci] to an arbitrary
synchronizing state from π3[Cg(i)].

Thus the function nextcomp cycles through all compartments of a given CBA while
the function nextsync cycles through the synchronizing states inside a single compartment.

Given an accepting run ρ of a limit-linear CBA on some word w, we have Inf(ρ) = {v}
for some non-synchronizing state v ∈ π3[F ] or Inf(ρ) = C, where C is some compartment of
the automaton. Furthermore, for a fixed compartment C in a limit-stationary automaton
and a fixed word w, there are infinitely many numbers i such that for all runs ρ on w
with Inf(trans(ρ)) = C, we have ρ(i) = v, where v is the synchronizing state of C. Then
any two runs that accept w by using the whole compartment C are synchronized from
some point on; in other words: in limit-linear or limit-stationary automata, runs that
accept w by using the whole compartment C differ only on finite prefixes.
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4.1 Automata on Infinite Words

4.1.2 Determinization of Automata on Infinite Words

For automata on infinite words, determinization procedures are more involved and
lead to asymptotically larger automata than the plain powerset construction for NFA.
We now discuss several determinization methods for various types of automata and in
particular show how limit-deterministic parity automata can be determinized through
limit-deterministic Büchi automata. The determinization methods for limit-linear CBA
and limit-deterministic PA are novel and the methods for unrestricted CBA [34], un-
restricted BA [44,42] and unrestricted PA [27] are standard (but we prove a slighter
lower bound on automata size for determinized unrestricted PA), while a method that
determinizes limit-deterministic BA has recently been described in [12]. We give a different
representation of this last method in terms of partial permutations and obtain a slightly
lower bound on the size of determinized limit-deterministic BA than [12].

4.1.2.1 Determinizing Co-Büchi Automata For limit-linear CBA, it suffices to
annotate macrostates from the powerset construction with single tracked states and a
time-out (that is, a natural number) on the compartment to which the tracked state
belongs.

Definition 4.1.11 (Determinization of limit-linear CBA). We assume a limit-
linear CBA A = (V,Σ,∆, v0, F ) that admits progressing runs and in which each com-
partment has at most q ≤ |V | synchronizing states. By definition we have, for each t ∈ F ,
that |π3[F |t∩ Id]| = 1. We recall that the function nextcomp allows us to cycle through all
compartments of A while the function nextsync cycles through the synchronizing states
in a single compartment. We put s(v) = {u ∈ F | sync(u) = nextsync(v)} and define the
deterministic CBA B = (V ′, Σ, δ, w0, F

′) by putting

V ′ = P(V )× {1, . . . , q} × π3[F ]

F ′ = {((U,m, v), a, (U ′,m′, v′)) ∈ δ | m = m′ and C(v) = C(v′)}

and w0 = ({v0}, q, v), for some synchronizing v ∈ F ; furthermore, we put, for (U,m, v) ∈
V ′ and a ∈ Σ,

δ((U,m, v), a) = (∆(U, a),m, v)

if a /∈ P and

δ((U,m, v), a) =


(∆(U, a),m, nextsync(v)) if F (U, a) ∩ s(v) 6= ∅
(∆(U, a),m− 1, (nextsync)2(v)) if F (U, a) ∩ s(v) = ∅,m > 1

(∆(U, a), q, nextcomp(v)) if F (U, a) ∩ s(v) = ∅,m = 1

if a ∈ P , where F (U, a) = {v ∈ V | ∃u ∈ U. (u, a, v) ∈ F}; we refer to transitions from F ′

(i.e. the latter two clauses in the above definition of δ((U,m, v), a) for a ∈ P ) as retracking
steps.

We define the label l(u) ⊆ V of a macrostate u = (U,m, v) ∈ V ′ by l(u) = U .
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The determinized automaton thus tracks single synchronizing states v ∈ π3[F ] along
macrostates but also keeps a time-out on the number of retracking steps that are allowed
to happen inside the compartment to which the tracked state belongs. The retracking
steps are defined in such a way that if infinitely many retracking steps tack place, all
runs from all compartments are eventually tracked. For any two synchronizing states
v, w ∈ C belonging to the same compartment C we have an asymmetric distance
d(v, w) such that d ≤ q ≤ |C| and nextsync(w) = (nextsync)d(v). This distance is
invariant under simultaneous progressing transitions, i.e. for any two states v, w ∈
π3[F ], d(nextsync(v), nextsync(w)) = d(v, w). A refocusing step inside a compartment
chooses nextsync2(v) = nextsync(nextsync(v)) as new tracked state and thus reduces the
distance from the current tracked synchronizing state to any synchronizing state in the
same compartment – except for nextsync(v) – by one. Thus q retracking steps inside a
compartment suffice to ensure that every run through that compartment has been tracked
at least once. Hence the time-out on compartments is initialized as q (where q ≥ |C| for
any compartment C) and is reduced by each retracking step inside the compartment.
When it reaches 1, all runs through the current compartment have been tracked; in any
ensuing retracking step, a state from the next compartment is chosen as new tracked
state and the time-out is set to q again. This combined retracking process ensures that if
infinitely many retracking steps take place, then every uniform and progressing run is
tracked and finished infinitely often.

Example 4.1.12. Let Σ = {a, b, c, d}, let c and d be progressing letters and let
there be no choice letters. We determinize the limit-linear CBA A that is shown be-
low to the DCBA B, depicting accepting transitions with rectangular boxes around
their labels. All states in A have at most one successor that can be reached with
an accepting transition (with the exception of trivial loops). Also no trivial loop is
labelled with a progressing letter. There is just one 0-compartment, namely the set
C = {(x, a, y), (y, b, z), (z, c, u), (u, a, u), (u, b, u), (u, d, x)} = F , and this compartment
has the two synchronizing states z (which has a c-successor in C) and u (which has a
d-successor in C); thus A permits progressing runs and we have q = 2. To improve the
legibility of this example, there are, for some states in π3[F ], non-choice letters for which
the respective states do not have a transition in F ; hence, A is formally not a limit-linear
CBA. We note that A can be easily made limit-linear without changing the essence of
this example by adding a trivial accepting loop at each state π3[F ] for each non-choice
letter.

We choose f(x) = y, f(y) = z, f(z) = u and f(u) = x; thus sync(x) = sync(y) =
sync(z) = z and sync(u) = u so that nextsync(z) = u, nextsync(u) = z. As there is
just one compartment, we choose nextcomp(z) = nextcomp(u) = z and pick z ∈ π3[F ]
as the initially tracked state in the determinized automaton, which then starts at
the state ({x}, 2, z). Moreover, we have L̃(A) = L̃(B) = (ab(c + d)(a + b)∗d)ω since
uniform words contain infinitely many progressing letters and hence cannot end on
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(a+b)ω; in this example, there is no choice letter so that every progressing word is uniform.

A:

x

start

y u

zv

a

b

a,b

d

c,d

b

a, b

B:

{x}, 2, z

start

∅, 1, z

∅, 2, z

{y}, 2, z

{v, z}, 2, z

{u}, 2, u

{v}, 2, z

∅, 1, u ∅, 2, u

c, d

b

a

a,b

a,b

a,b

a,b

c, d

ac, dc, d

c, d

c, d

c

b

c,dd

a,b

a,b

c, d

a,b

Runs in the determinized automaton B start at the state ({x}, 2, z) and initially attempt
to track states that have z as synchronizing state. There is a a-transition from x to y
and a b-transition from y to z in A so that we have an (accepting) a-transition from
({x}, 2, z) to ({y}, 2, z) and an (accepting) b-transition from ({y}, 2, z) to ({v}, 2, z) in
B. From z there are accepting c- and d-transitions to u in A and both c and d are
progressing letters so that we have accepting c- and d-transitions ({v}, 2, z) to ({u}, 2, u)
in B; note that nextsync(z) = u. The circle is closed by the accepting transition (u, d, x)
in A and similarly by the accepting and progressing transition (({u}, 2, u), d, ({x}, 2, z))
in B. After having read the word ab, A can be in one of the states v or z and B is in
the state ({v, z}, 2, z). If the next read letter is a or b, then the ab-run through z in A
does not continue and is finished. In B, the non-progressing letter b thus leads from
({v, z}, 2, z) to ({v}, 2, z). The state v has no c- or d-transition in A so that when letter c
or d is read, ({v}, 2, z) transitions via a non-accepting transition to (∅, 1, z) in B. Since c
and d are progressing and there is no accepting c- or d-transition from {v} to a state
that has nextsync(z) = u as synchronizing state, the time-out for the compartment F is
decreased from 2 to 1 and the transition indeed is non-accepting. Another progressing
transition from (∅, 1, z) cannot decrease the time-out any more since it already is 1 so
that a state from the next compartment is tracked. Since there is just one compartment
in A and we chose nextcomp(z) = z, (∅, 1, z) has non-accepting c- and d-transitions to
(∅, 2, z). We note that all non-progressing transitions in B are accepting, which allows
for additional accepting runs for non-progressing words in B; thus A and B are only
equivalent w.r.t. uniform and synchronizing words.
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Lemma 4.1.13. Let A, B, n := |V | and q ≤ n be as in Definition 4.1.11. Then L̃(A) =
L̃(B) and |V ′| ≤ 2n · q · o ∈ 2O(n), where and A has o ≤ |π3[F ]| ≤ n compartments.

Proof. The bound on the size of V ′ follows immediately from the definition of V ′.
Let w ∈ L̃(A), i.e. let w be uniform (and hence progressing) and synchronizing and

let there be an accepting run ρ ∈ run(A, w). Then there is some i such that for all
j ≥ i, (trans(ρ))(j) ∈ F . Since A is limit-linear, we have for all j ≥ i such that w(j) is a
progressing letter that F |ρ(j),w(j) = {ρ(j + 1)}. Let τ = run(C, w) and write, for j ≥ i,
τ(j) = (Uj ,mj , vj), having ρ(j) ∈ Uj . We put uj = sync(ρ(j)) and distinguish three cases:

1. If uj = vj for some j ≥ i, then we have, that for all j′ ≥ j, τ(j′ + 1) =
(∆(Uj′ , w(j′)),mj′ , uj′): Assume vj′ = uj′ . If w(j′) is not a progressing letter, then
vj′+1 = vj′ = uj′ = uj′+1. If w(j′) is a progressing letter, then uj′+1 = nextsync(uj′)
and vj′+1 = nextsync(vj′) = nextsync(uj′). As ρ(j′) ∈ Uj′ for all j′ ≥ i and
ρ(j′ + 1) ∈ F (Uj′ , w(j′)) ∩ s(vj′) for all j′ ≥ i such that w(j′) is a progressing
letter, no retracking step takes place after position i, showing that τ is accepting.

2. If uj 6= vj , vj ∈ C(ρ(j)) and mj > d(vj , uj) (where d(vj , uj) denotes the least number
m with nextsyncm(vj) = uj), i.e. if both vj and ρ(j) belong to the same compartment
and the time-out allows for reaching vj before leaving the compartment, then we
observe that for every retracking step at some position j′ with w(j′) a progressing
letter, we have d(vj′ , uj′) < d(nextsync(nextsync(vj′)), nextsync(uj′)). By induction on
mj we see that eventually either no retracking step takes place (in which case τ is
accepting) or a position j′′ is reached where d(vj′′ , uj′′) = 0, i.e. where vj′′ = uj′′ .
Then we are in case 1.

3. If uj 6= vj , and vj /∈ C(uj) then vj and uj do not belong to the same compartment.
If uj 6= vj , vj ∈ C(uj) and mj ≤ d(vj , uj), then the two states belong to the same
compartment but the time-out mj does not allow for reaching vj before changing
the compartment. Let j′ ≥ j be the first position with vj′ /∈ C(uj′), noting that if
no such position exists, then no retracking step occurs from some point on and τ
is accepting. Let o denote the least number such that (nextcomp)o(uj′) ∈ C(vj′), i.e.
the number of times that the compartment has to be changed until a state from the
compartment to which vj′ belongs is tracked. Proceeding by induction over o, we have
that either eventually no retracking step takes place, or we reach the situation o = 0.
In the former case, τ is accepting, in the latter case, let j′′ be the first position j′′

with j′′ ≥ j′ and uj′′ ∈ C(vj′′). As the focus just changed to the compartment of vj′′ ,
mj′′ = |F | and either vj′′ = uj′′ and we are in case 1, or vj′′ 6= uj′′ but uj′′ ∈ C(vj′′)
and mj′′ > d(vj′′ , uj′′) and we are in case 2.

Conversely, let w ∈ L̃(B), i.e. let w be a uniform (and hence progressing) and synchronizing
word and let τ = run(B, w) be an accepting run. Then there is an i such that for all j ≥ i
with τ(j) = (Uj ,mj , vj), mj+1 = mj and C(vj) = C(vj+1). In other words: from i on, none
of the two retracking steps takes place in τ . For i ≥ 0, we have Ui = ∆(v0, pre(w, i)), i.e.
Ui contains exactly those states that are reachable in A via the first i−1 letters of the word
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w. Let j0 be the first position after i such that w(j0) is a progressing letter. Then we have
F (Uj0 , w(j0)) ∩ s(vj0) = {u0} for some u0 and τ(j0 + 1) = (Uj0+1,mj0+1, nextsync(vj0))
with mj0+1 = mj0 . As F (Uj0 , w(j0)) ⊆ ∆(Uj0 , w(j0)), we have u0 ∈ Uj0+1 and there is a
finite run ρ0 ∈ runf (A, pre(w, j0 + 1)) with ρ(j0 + 1) = u0. Let j1 denote the first position
after j0 such that w(j1) is a progressing letter. We have to show that there is a finite run
in A on the word w(j0 + 1) . . . w(j1) that starts at u0 and uses only transitions from F .
There is some u1 such that F (Uj1 , w(j1)) ∩ s(vj1) = {u1} where, i.e. Uj1 contains a state
u′j1 with sync(u′j1) = vj1 . By Lemma 4.1.14 below and since we have the F -transition
(vj1 , w(j1), u1), there is a w(j0 + 1) . . . w(j1)-run ρ1 that starts at u0, ends at u1 and only
uses transitions from F . In this way we construct an infinite run ρ = ρ0; ρ1; . . . of A on
the word w. From i on, ρ uses only transitions from F and thus is accepting. �

Lemma 4.1.14. Let A be a limit-linear CBA with progressing letters P and pairs of
choice letters Q, let w be a uniform and synchronizing word and let i < j be positions
such that w(i), w(j) ∈ P and for all i < i′ < j, w(i) /∈ P . Also let ρ ∈ run(A, w) be a run
such that ρ(i) = v ∈ π3[F ] and sync(v) = u = ρ(j). Then there is a run τ ∈ run(A, w)
such that τ(i) = v ∈ π3[F ], sync(v) = u = τ(j) and (trans(τ))(i′) ∈ F for all i < i′ < j.

Proof. We start at v and inductively construct a run τ from v to u that reads the
word w(i + 1) . . . w(j − 1) and only uses transitions from F . We put τ(i) = ρ(i). Let
i < i′ < j. If w(i′) is not a choice letter then we have – since A is limit-linear – a transition
(τ(i′− 1), w(i′), v′) ∈ F and we put τ(i′) = v′. If w(i′) is part of a choice pair (a1, a2), say
w(i′) = a1, then w(i+ 1) . . . w(j − 1) does not contain a2 by uniformity of w. Assume
that τ(i′ − 1) does not have an a1 successor in F . Then we have that for any position
i < j′ < j such that ρ(j′−1) = τ(i′−1) and ρ(j′) 6= ρ(j′−1) (i.e. (trans(ρ))(j′−1) is not
a trivial loop) that w(j′) = a so that (trans(ρ))(j′ − 1) /∈ F and hence sync(ρ(j′)) 6= u:
since A is a limit-linear CBA, no entry transition to the compartment of v (and hence no
state u′ with sync(u′) = u) can be reached by non-progressing transitions. This implies
that there is no path from ρ(j′) for the word w(j′) . . . w(j − 1) that reaches u, i.e. that
ρ(j) 6= u, a contradiction. Since w is a synchronizing word and w(j) ∈ P , τ(j) is a
synchronizing state and since τ only uses transitions from F between τ(i) and τ(j), we
have τ(j) = sync(τ(i)) = u, as required. �

Corollary 4.1.15. Limit-linear Co-Büchi automata of size n, with o compartments and
at most q synchronizing states per compartment can be determinized to DCBA of size at
most o · q · 2n. Limit-stationary Co-Büchi automata of size n and with o compartments
can be determinized to DCBA of size at most o · 2n.

In both cases the determinized automaton is equivalent to the original automaton
only w.r.t. uniform and synchronizing acceptance, which however is sufficient for the
constructions that are described in Chapter 5.
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In unrestricted Co-Büchi automata, runs can branch (non-linearly and) nondetermin-
istically through different transitions from F so that accepting runs for a single word can
differ in their infinite part. Thus it is not sufficient to sequentially track single states;
rather a set of states has to be tracked when determinizing unrestricted CBA. This
method was first described by Miyano and Hayashi in [34]. When one of these tracked
states is finished (i.e. no transition from that state under the next read letter is contained
in F ), then it is removed from the set of tracked states. When the set of tracked states is
just the empty set, a retracking step takes place and the set of all current states that
have been reached by an accepting transition by the last letter that was read is chosen as
new set of tracked states. A run is accepting if it contains only finitely many retracking
steps.

Definition 4.1.16 (Determinization of CBA). Let A = (V,Σ,∆, v0, F ) be a NCBA.
We define the DCBA B = {V ′, Σ, δ, ({v0}, ∅), F ′}, where V ′ is the set of all functions
f : V → {0, 1, 2} with the property that for all v ∈ V , f(v) = 2 implies v ∈ F . Given
some f ∈ V ′, we can see it as a macrostate; here, macrostates are pairs (U,W ) of disjoint
sets U ⊆ V , W ⊆ F with U = {v ∈ V | f(v) = 1} and W = {v ∈ F | f(v) = 2}, where
W is the set of tracked states in f and U is the set of untracked states in f . We put
F ′ = {((U,W ), a, (U ′,W ′)) ∈ δ |W 6= ∅} and, for (U,W ) ∈ V ′ and a ∈ Σ,

δ((U,W ), a) =

{
((∆(U, a) ∪ F (W,a)), F (W,a)) if W 6= ∅
(F (U, a), F (U, a)) if W = ∅,

where F (U, a) = {v ∈ V | ∃u ∈ U. (u, a, v) ∈ F} and F (U, a) = {v ∈ V | ∃u ∈
U. (u, a, v) ∈ F}. We refer to transitions from F as retracking steps. We define the label
l(v) of a macrostate v = (U,W ) ∈ V ′ by l(v) = U ∪W .

Example 4.1.17. Let Σ = {a, b, c}. We determinize the NCBA A that is shown below
to the DCBA B, depicting accepting transitions with rectangular boxes around their
labels. We have L(A) = L(B) = (ab+ + ac+)∗(abω + acω), i.e. both automata accept
words that start on a, do not contain bc, cb or aa and that end on bω or on cω.

A:

x

start

y z

a a

b c

b c

B:

{x}, ∅

start

{y, z}, ∅

{x}, {y}

{x}, {z} ∅, ∅

a

b, c

b a

a

c

a

b

c

c

b

a, b, c

Runs in the determinized automaton B start at the macrostate ({x}, ∅) and initially
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do not track any state. There are non-accepting a-transitions from x to y and to z
in A so that we have an a-transition from ({x}, ∅) to ({y, z}, ∅) in B; this transition
starts at a macrostate with empty set of tracked states and hence is non-accepting.
Neither y nor z are reachable from x by an accepting a-transition, so the macrostate
({y, z}, ∅) still has the empty set as set of tracked states. From y there is an accepting
b-transition to y and a non-accepting b-transition to x in A; similarly, there is an
accepting c-transition from z to z and a non-accepting c-transition from z to x. In B,
there are corresponding non-accepting b- and c-transitions from ({y, z}, ∅) to ({x}, {y})
and ({x}, {z}), respectively. All outgoing transitions from these two macrostates are
accepting. The b-loop at ({x}, {y}) exists because of the b-loop at y in B that keeps on
tracking y. For the letter a however, there is a transition from ({x}, {y}) to ({y, z}, ∅),
as the state y does not have any outgoing a-transition in A. Thus the states y and z
can only be reached by a-transitions from {x, y} via the non-accepting transitions that
start at x in A. It is hence not possible to track the tracked state y from {x, y} to {y, z}
via an accepting transition so that the set of tracked states in the macrostate ({y, z}, ∅)
in B is the empty set and any subsequent transition in B will be a (non-accepting)
retracking transition. Similarly, an accepting c-loop exists at ({x}, {z}) in B and the
state z cannot be tracked through an a-transition from {x, z} to {y, z} so that there is
an a-transition from ({x}, {z}) to ({y, z}, ∅). As a result, accepting runs in B eventually
loop at ({x}, {y}) or at ({x}, {z}).

Lemma 4.1.18 ([34]). Let A and B be defined as described above. Then L(A) = L(B)
and |V ′| ≤ 2n−m3m ≤ 3n where n = |V |, m = |F | ≤ n.

Proof. The bound on the size of B follows since for f ∈ V ′, for every v ∈ F , f(v) ∈ {0, 1}
and for every v ∈ F , f(v) ∈ {0, 1, 2}. Thus there are 2|F | = 2n−m choices for the states
from F and 3|F | = 3m choices for the states from F . Combining both bounds, we obtain
that there are 2n−m3m different functions f ∈ V ′.

To see that L(A) ⊆ L(B), let w ∈ L(A), i.e. let there be an accepting run ρ ∈ run(A, w).
We have to show that the run τ = run(B, w) is accepting, that is, that there is a
number i such that for all j ≥ i, (trans(τ))(j) ∈ F ′, i.e. τ(j) = (Uj ,Wj) for some
Uj ⊆ V , ∅ 6= Wj ⊆ F . As ρ is accepting, there is a number i′ such that for all j′ ≥ i′,
(trans(ρ))(j′) ∈ F . For each such j′, we have ρ(j′) ∈ Uj′ ∪ Wj′ by construction. If
ρ(j′) ∈ Uj′ (i.e. ρ(j′) is not in the set of tracked states Wj′), then we distinguish two
cases: If there is no o ≥ j′ with Wo = ∅ (i.e. no retracking step takes place after j′), then
τ is accepting and we are done. Otherwise, let o ≥ j′ be a number with Wo = ∅, i.e. let
a retracking step take place in the transition (trans(τ))(o). We show that ρ(o + 1) is
contained in the new set of tracked states Wo+1: As ρ(o) ∈ U(o), ρ(o+ 1) ∈ ∆(Uo, w(o));
furthermore, (trans(ρ))(o) ∈ F and hence ρ(o+ 1) ∈Wo+1 = F (Uo, w(o)). It remains to
show that for j ≥ i′, ρ(j) ∈Wj implies ρ(j + 1) ∈Wj+1, i.e. that whenever ρ(j) is in the
set of tracked states after at least i′ steps, it remains in the set of tracked states forever.
As ρ(j) ∈Wj , Wj 6= ∅. Then ρ(j + 1) ∈ F (Wj , w(j)) = Wj+1, as required.
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To see L(B) ⊆ L(A), let w ∈ L(B), i.e. let τ = run(B, w) be accepting. We have to
show that there is an accepting run ρ ∈ run(A, w) for which there is a number i such that
for all j ≥ i, (trans(ρ))(j) ∈ F . As τ is accepting, there is a number i′ such that for all
j′ ≥ i′, (trans(τ))(j′) ∈ F ′, i.e. τ(j′) = (Uj′ ,Wj′) with Wj′ 6= ∅. Let vi′ ∈Wi′ be a state
with the property that for all j′ ≥ i′, there is a state vj′ ∈ Wj′ ∩∆({vi′}, w(i′, j′)) 6= ∅,
where w(i′, j′) denotes the word w(i′), w(i′ + 1), . . . , w(j′ − 1), w(j′); then vj′ is a state
that is always has a descendant in the set of tracked states Wj′ (i.e. from i′ on, the set of
tracked states always contains at least one state vj′ that goes back to vi′). As each set of
tracked states Wj′ with j′ ≥ i′ consists of those states that are reachable in A from some
state v ∈ Wi′ via the word w(i′), w(i′ + 1), . . . , w(j′ − 1), w(j′) using only transitions
from F , a state vi′ with the described property must exist: otherwise there is, for every
state v ∈Wi′ a point jv ≥ i′ such that Wjv contains no state that can be reached from
v via the word w(i′), w(i′ + 1), . . . , w(jv − 1), w(jv) using only transitions from F . Let
j′′ = max{jv | v ∈Wi′} be the greatest such number; we have Wj′′ = ∅, a contradiction.
Thus there is a run ρ ∈ run(A, w) with ρ(i′) = vi′ and for all j′ > i′, ρ(j′) = vj′ . As for
each such j′, vj′ ∈Wj′ has an w(j′)-transition to the state vj′+1, ρ is accepting. �

Corollary 4.1.19. Co-Büchi automata of size n can be determinized to deterministic
Co-Büchi automata of size at most 3n.

4.1.2.2 Determinizing Büchi Automata For the determinization of Büchi au-
tomata, it is necessary to annotate individual tracked states with additional information
that allows to ensure that the corresponding run uses transitions from F infinitely often.
It is convenient to think of this information as the age of the respective states, where a
tracked state that was reached by an accepting transition in the last step is younger than
any tracked state that was not reached by an accepting transition in the last step. In
general, the age of any two different tracked states can be different, thus it is not possible
to simply track a set of of states, as in Co-Büchi automata, and assign one joint age
to the whole set. Instead, every tracked state requires its own age. As it turns out, the
relative age of tracked states suffices to detect accepting runs, i.e. it is sufficient to know
at any point and for any two tracked states, which of the two states is the younger one.

As a result, the determinization of Büchi automata necessitates a permutation
structure on the set of tracked states, i.e. a structure that orders them according to their
relative age. Making use of a trick due to Piterman [42], it is then possible to employ a
parity condition to ensure the existence of a tracked state that is accepting infinitely
often without ever being removed from the set of tracked states. This is achieved by
using odd priorities 2i+ 1 to detect the removal of tracked states with relative age i and
even priorities 2i to detect that the tracked state with relative age i is reached by an
accepting transition. When the highest priority that occurs infinitely often is even, there
is a tracked state that from some point on is tracked forever and that is reached by an
accepting transition infinitely often.
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For limit-deterministic Büchi automata, tracked states only have deterministic transi-
tions. Thus the permutation structure described above suffices for their determinization;
the underlying idea of the resulting determinization method for limit-deterministic Büchi
automata has first been described in the context of controller synthesis for LTL [12].
Here we reformulate the construction in terms of partial permutations and obtain slightly
smaller automata.

Definition 4.1.20 (Partial permutations). Given a set U of states, let pperm(U)
denote the set of partial permutations over U , i.e. the set of non-repetitive lists l =
[v1, . . . , vn] with vi 6= vj for i 6= j and vi ∈ U , for all 1 ≤ i ≤ n. We denote the i-th
element in l by l(i) = vi, the empty partial permutation by [ ] and the length of a partial
permutation l by |l|. For v ∈ U , we write v ∈ l if l = [v1, . . . , vn] and there is some
1 ≤ i ≤ n such that vi = v.

Definition 4.1.21 (Determinization of limit-deterministic BA). Fix a limit-
deterministic BA A = (V,Σ, δ, u0, F ), and put Q = π3[reach(π3[F ])], Q = V \Q, q = |Q|.
Define the DPA B = (W,Σ, δ′, w0, α) by putting W = P(Q)× pperm(Q), w0 = ({u0}, [ ])
if u0 ∈ Q, w0 = (∅, [u0]) if u0 ∈ Q and for g = (U, l) ∈W and a ∈ Σ, δ′(g, a) = h, where
h = (δ(U, a) ∩Q, l′) and where l′ is constructed from l = [v1, . . . , vm] as follows:

1. Define a list t of length m over Q ∪ {∗} (with ∗ representing undefinedness) in which
t(i) = w if δ(vi, a) = {w}, and t(i) = ∗ if δ(vi, a) = ∅.

2. For j < k and t(j) = t(k), put t(k) = ∗.
3. Remove undefined entries in t, formally: for each 1 ≤ i ≤ |t|, if t(i) = ∗, then iteratively

put t(j) = t(j + 1) for each i ≤ j ≤ |t|, starting at i.
4. For any w ∈ δ(U, a) ∩Q that does not occur in t, add w to the end of t. If there are

several such w, the order in which they are added to t is irrelevant.
5. Put l′ = t.

Temporarily, t may contain duplicate or undefined entries, but Steps 2. and 3. ensure that
in the end, t is a partial permutation of length at most q. Let r (for ‘removed’) denote
the lowest index i such that t(i) = ∗ after Step 2. Let a (for ‘active’) denote the lowest
index i such that (l(i), a, l′(i)) ∈ F . If r > |l′| and there is no i with (l(i), a, l′(i)) ∈ F ,
then put α(g, a, h) = 1. Otherwise, put

α(g, a, h) =

{
2(q − r) + 3 if r ≤ a
2(q − a) + 2 if r > a.

We define the label l(v) of a macrostate v = (U, l) ∈W by l(v) = U ∪ {v ∈ V | v ∈ l}.

Example 4.1.22. Consider the limit-deterministic BA A depicted below and the
determinized DPA B that is constructed from it by applying the method. We see
by Lemma 4.1.6 that A is really limit-deterministic: we have F = {(1, b, 3)}, i.e. the
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b-transition from state 1 to state 3 (depicted with a boxed transition label) is the only
accepting transition; thus we have Q = reach(π3[F ]) = {1, 3} (so Q = {0, 2}), and the
states 1 and 3 are deterministic. Moreover, L(A) = L(B) = a(a|b)+(a+b)ω.

A:

0

start

1 2

3

a

a a

a

b

a, b

a, b
a

B:

{0}, [ ]

start

∅, [ ]

{0, 2}, [1]

{0, 2}, [1, 3]

{2}, [3]

{2}, [1, 3]

b, 1

a, 1

a, b, 1

a, 1

b, 4

a, 3

b, 4

b, 5

a, 1

a, 3

b, 4

Notice that in B, there is a b-transition with priority 1 from the initial state to the
sink state (∅, [ ]) and an a-transition to ({0, 2}, [1]); as 1 ∈ Q but (0, a, 1) /∈ F , this
transition has priority 1. A further b-transition leads from 1 to 3 in A; in B, we have
a b-transition from ({0, 2}, [1]) to ({2}, [3]) and since (1, b, 3) ∈ F , the first position
in the permutation component is active during this transition so that the transition
has priority 4. Yet another b-transition loops from ({2}, [3]) to ({2}, [3]). Since there is
no b-transition starting at state 3, the first element in the permutation is removed in
Step 1. of the construction. Since there is a b-transition from 2 to 3, it is added to the
permutation again in Step 4. of the construction. Crucially, however, the priority of the
transition is 5, since the first item of the permutation has been (temporarily) removed.
The intuition is that the trace of 3 ends when the letter b is read; even though a new
trace of 3 immediately starts, we do not consider it to be the same trace as the previous
one. Thus the transition obtains priority 5 so that it may be used only finitely often in
an accepting run of B, i.e. accepting runs contain an uninterrupted trace that visits state
3 infinitely often. Thus two or more consecutive b’s can only occur finitely often in any
accepted word.

Theorem 4.1.23. Let A and B be as defined above and let n = |V |. We have L(A) = L(B)
and B has at most 2n + 1 priorities; for n ≥ 4, we have |W | ≤ n!e, where e denotes
Euler’s constant.

Proof. Put n = |W |. The number of partial permutations over the set Q of size q is

|pperm(Q)| ≤
q∑
i=0

q!

(q − i)!
≤ q!

∞∑
i=0

1

i!
= q!e;

hence we have |W | ≤ 2n−q · q!e. As q ≤ n, we have that for n > 3, 2|n−q| · q! ≤ n!
so that the claimed bound follows. For all t ∈ δ′, we have by definition of α that
1 ≤ α(t) ≤ 2(q− 1) + 3 = 2q + 1 ≤ 2n+ 1, i.e. B has at most 2n+ 1 priorities. It remains
to show that A and B are equivalent.

Let w ∈ L(A), i.e. let there be an accepting run σ ∈ run(A, w). By limit-determinism
of A, there is an i such that for all j ≥ i, δ|σ(j),w(j)∩Q = {trans(σ)(j)}. As σ is accepting,
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Inf(trans(σ)) ∩ F 6= ∅. To see that the run ρ = run(B, w) is accepting, we have to show
that the highest priority in Inf(α ◦ trans(ρ)) is even. For j′ ≥ i, we have ρ(j′) = (Uj′ , lj′),
and Q 3 σ(j′) = lj′(k) for some k, i.e. from i on, the corresponding state from σ is
contained in the permutation components of ρ. Since σ is infinite (and deterministic from
i on), σ(j′) can be tracked forever so that the corresponding position in the permutation
component never changes to ∗ in step 1. of the construction. If there is a position m < k
for which there is some j′′ ≥ i such that lj′′(m) changes to ∗ in step 1. of the construction,
then k is changed to k − 1, i.e. the considered state moves to the left in the permutation
component; this can only happen finitely often without removing the considered state,
thus eventually no position to the left of the considered state in the permutation changes
to ∗; the considered state is stationary from then on. Now let o and k′ be suitable numbers
with σ(o′) = lo′(k

′) for all o′ ≥ o; from o on, k′ is the position that tracks the run σ
and no position with index less than or equal to k′ is removed from the permutation
component after o and hence for all q ≥ o, rq > k′, where rq is the lowest index that
turns to ∗ during steps 1. and 2. of the transition trans(ρ)(q); i.e. all such transitions
with odd priority have priority at most 2(n− k′) + 1. As Inf(trans(σ)) ∩ F 6= ∅, position
k′ is active infinitely often, i.e. there are infinitely many q ≥ o with trans(σ)(q) ∈ F and
α(trans(ρ)(q)) = 2(n− k′) + 2. Thus ρ is accepting.

Conversely, let w ∈ L(B), i.e. let the run ρ = run(B, w) be accepting and let p be the
highest priority in Inf(α◦trans(ρ)). Then p is even and there is some i such that for all j ≥ i,
α(trans(ρ)(j)) ≤ p and there are infinitely many j ≥ i with α(trans(ρ)(j)) = p. Let ρ(j) =
(Uj , lj); abusing notation by interpreting lj as a set, we observe Uj ∪ lj ⊆ δ(v0, pre(w, j)),
i.e. every state in Uj and lj can be reached in A from v0 via the word pre(w, j). We consider
the position k with 2(q−k)+2 = p. For all j ≥ i let rj denote the lowest index that turns
to ∗ in the transition ((Uj , lj), w(j), (Uj+1, lj+1)); furthermore let aj denote the lowest
number such that (lj(aj), w(j), lj(aj)) ∈ F (if no such number exists, then put rj = q + 1
and aj = q+ 1, respectively). As for all j ≥ i, α(trans(ρ)(j)) ≤ p = 2(q−k) + 2 we always
have rj > k and aj ≥ k since otherwise α(trans(ρ)(j)) = 2(q − rj) + 3 ≥ 2(q − k) + 3 or
α(trans(ρ)(j)) = 2(q−aj)+2 > 2(q−k)+2. Thus the k-th component is – from position i
on – stationary in the permutations and infinitely often active. As li(k) ∈ δ(v0, pre(w, i)),
there is a finite run κ ∈ runf (A, pre(w, i)) with |κ| = i + 1, κ(0) = v0 and κ(i) = li(k).
By definition, li(k) ∈ Q and since A is limit-deterministic, there is just a single run
τ ∈ run(A, li(k), post(w, i)). We have τ ⊆ Q and for all j ≥ 0, τ(j) = li+j(k), i.e. τ tracks
the k-th element of the permutation components. Since there are infinitely many j ≥ i
with α(trans(ρ)(j)) = 2(q− k) + 2 and aj = k, i.e. with the k-th element lj(k) in lj active
and hence with trans(τ(j)) ∈ F , we have Inf(trans(τ)) ∩ F 6= ∅. Thus κ; ρ ∈ run(A, w) is
accepting. �

Corollary 4.1.24. Limit-deterministic Büchi automata of size n can be determinized to
deterministic parity automata of size O(n!) and with O(n) priorities.
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For unrestricted Büchi automata, tracked states may transition non-deterministically.
We say that two runs ρ1 and ρ2 of an automaton are merged at position i if ρ1(i) = ρ2(i)
and split otherwise. Runs in unrestricted Büchi automata may be merged and/or split
infinitely often. Thus it is possible that an accepting and a non-accepting run both use
some joint (non-accepting) transition infinitely often. Considering two runs ρ1, ρ2 that
are merged at positions i and j > i + 1 but that are split at some position i < k < j,
it is possible that (trans(ρ1))(k) ∈ F but (trans(ρ2))(k) /∈ F . The different runs from
ρ1(i) to ρ1(j) have to be told apart and it is necessary to decide for each individual run
whether it uses infinitely many accepting transitions. Assuming that we just track a set
of states (ordered by their relative age), the two runs ρ1 and ρ2 are – at position j – both
represented by the single state ρ1(j) = ρ2(j), which does not hold the information that
ρ1 recently used an accepting transition while ρ2 has not. Thus sets of states have to be
tracked and annotated with additional information that allows for inferring whether the
set of states has recently been accepting. In order to detect the accepting run ρ1, the
respective tracked set of states has to be accepting if it contains a state that is currently
accepting. Then an accepting run is a sequence of macrostates, such that the sequence of
tracked states allows for at least one run that uses a transition from F infinitely often.
Here it is necessary to ensure that infinitely many of the accepting transitions belong to
one individual run: It may be the case that the input word leads through two separate
loops l1, l2 in the automaton consisting only of non-accepting transitions but having a
nondeterministic accepting transition from loop l1 to loop l2. There is no single run that
uses the accepting transition infinitely often but there are infinitely many runs that use
the accepting transition (each run using it just once).

The Safra/Piterman construction [44,42] accounts for this fact by determinizing Büchi
automata by means of so-called Safra trees, i.e. trees whose nodes are labelled with sets
of states of the input automaton such that the label of a node is a proper superset of
the union of all its children’s labels. Additionally, the nodes are ordered by their relative
age and the priorities of transitions between Safra trees determine the ages of the oldest
nodes that are active and/or removed during this transition. In its original formulation,
the Safra/Piterman construction adds new child nodes to the graph that are labelled with
the accepting states in their parent’s label. We observe that this step can be modified
slightly – without affecting the correctness of the construction – by letting every state
from the parent’s label that is reached by an accepting transition receive its own separate
child node; then the labels of newly created nodes always are singleton sets and in general
the labels of nodes always belong to a single compartment.

Definition 4.1.25 (Compartmentalized Safra trees). Let A = (V,Σ, δ, v0, F ) be
a Büchi automaton with n = |V | states, o different compartments with at most q
states in each compartment. A compartmentalized Safra tree (W,p,m, l) over A is –
similarly as in [42] – a tree with set W = {u0, . . . , un−1} of nodes with |W | = n, with
partial parent function p : W ⇀ W (which is undefined at the root), naming function
m : W → {0, . . . , n− 1} and labelling function l : W → P(V ). The function m assigns
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a name, that is, a number between 0 and n − 1 (coding to relative age) to each node
in a compartmentalized Safra tree while l assigns to each node w ∈ W a set of states
l(w) ⊆ π3[C] ⊆ V , where C is some compartment of A; furthermore we require that
the labels of child nodes are a proper subset of the parents label and that the labels of
siblings do not intersect. The crucial difference to standard compact Safra trees is the
condition that for each node w ∈W , all states in the label of w belong to some individual
compartment C. Given two nodes v, w ∈ W with m(v) < m(w) we say that v is older
than w. Let cst(A) denote the set of all compartmentalized Safra trees over A.

It was shown in [42] that for any set of state V with |V | = n, there are 2(nn) · n! ∈
2O(n logn) compact Safra trees over V . We will construct a deterministic parity automaton
so that – in contrast to compact Safra trees – information regarding the priorities is not
part of compartmentalized Safra trees; instead the priorities are assigned to transitions.
Furthermore, the restriction to compartmentalized Safra trees implies that the tree
structure falls apart into o subtrees, each containing at most q states so that the bound
on the number of compartmentalized Safra trees is nno · (q − 1)! where o ≤ n, q ≤ n (see
Theorem 4.1.27).

Definition 4.1.26 (Determinization of NBA). Let A = (V,Σ,∆, v0, F ) be an NBA
with n = |V | states. We define the deterministic PA B = (cst(A), Σ, δ, w0, α) by putting
w0 = ({u0, . . . , un−1}, ∅,m0, l0) where m0(u0) = 0 and l0(u0) = {v0} (w0 is the initial
Safra tree with just one node u0 with non-empty label l0(u0) = {v0} and with name
m0(u0) = 0); For t = (W,p,m, l) ∈ cst(A) and a ∈ Σ put δ(t, a) = t′ = (W,p′,m′, l′),
where the components of t′ are constructed from t as follows:

1. For every node w ∈ W with label l(w), put l′(w) = ∆(l(w), a), p′(w) = p(w) and
m′(w) = m(w). This tracks the label of each node in the compartmentalized Safra
tree through an a-transition in A while maintaining the tree and naming structures.

2. For every node w ∈ W with ∅ 6= F (l(w), a) = {v1, . . . , vq} ⊆ l′(w), q > 0, (i.e. for
every node that has at least one state in its label that has an accepting a-transition),
add q temporary nodes wi to W , put

p′(wi) = w l′(wi) = {vi},

and assign the least unused name to wi, i.e. put m′(wi) = q, where q is the least
number that is not assigned as name to some node with non-empty label. This step
may temporarily increase the number of nodes in the tree to at most n2; call this
temporary set W ′. Step 6. reduces the number of nodes and names to at most n
again.

3. For every node w ∈W ′, remove all states from l′(w) that are contained in the label
of a sibling w′ of w with m(w′) < m(w), p′(w′) = p′(w).

4. For every node w ∈W ′ with set of child nodes D ⊆W ′ such that l′(w) =
⋃
d∈D l

′(d),
put the label of each p′-descendant of w to ∅; call the node w active during the
a-transition from t to t′.
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5. Adjust the names of all remaining nodes: For each node w ∈W ′, let rem(w) denote
the number of those nodes whose labels have been empty in steps 4. or 5. and have
a name less than m′(w). Put m′(w) = m′(w) − rem(w). Then there are at most n
nodes with non-empty label: assign names up to n2 to these nodes.

6. Remove each node v with m′(v) ≥ n from W ′, observing that for such v, l′(v) = ∅.
Uses the remaining nodes u0, . . . un−1 as new set W .

Let b ∈ Σ and let t, t′ be two compartmentalized Safra trees such that (t, b, t′) ∈ δ; let r
(for removed) be the minimum of the names of all nodes whose label is empty in steps
4. and 5. when computing t′ from t; if no node has an empty label, put r = n. Let a
(for active) be the minimum of the names of all nodes that are active in step 4. when
computing t′ from t; if there is no active node, then put a = n. If a = r = n, then put
α(t, b, t′) = 1; otherwise put

α(t, b, t′) =

{
2(n− a) if a < r

2(n− r) + 1 if a ≥ r.

We define the label l(t) of a compartmentalized Safra tree t ∈ cst(A) with nodes
u0, . . . , un−1 by l(t) = l(u0), noting that for all 0 ≤ i < n, l(ui) ⊆ l(u0) by construction.

Theorem 4.1.27 ([42]). Let A and B be defined as described above. Then L(A) = L(B),
|cst(A)| ≤ o(q − 1)!nn ≤ n!nn and B has at most 2n+ 1 priorities.

Proof. Regarding the size of |cst(A)|, we only consider the names of nodes and encode
the labelling function as a function f : V → {1, . . . , n} where f(v) denotes the name of
the oldest node i such that the label of i and all ancestors of i contain v. There are nn

such functions. Given a labelling function f , the set of nodes W is partitioned into at
most o ≤ n sets Wi of nodes such that for each Wi, the labels of all nodes from Wi are
contained π3[C] for a single compartment C. Each such set Wi contains at most q ≤ n
different nodes. There are o subtrees and each subtree can be encoded by a sequence
of q − 1 pointers, where the pointer for a node with name m points to the parent of
the node which has name at most m − 1. Thus there are, for each of the at most o
compartments, at most (q − 1)! different subtrees. Putting everything together, we have
|cst(A)| ≤ o(q − 1)!nn.

Let w ∈ L(A), i.e. let there be an accepting run ρ ∈ run(A, w). Then there is,
for each i a j ≥ i such that (trans(ρ))(j) ∈ F . Let τ = run(B, w) and for each i let
τ(i) = (Wi, pi,mi, li) and let ai and ri denote the names of the oldest nodes that are
active and removed, respectively, during the w(i)-transition from τ(i) to τ(i+1). We have
ρ(0) ∈ l(u0). If the node u0 is active infinitely often in τ , then we know – since the run ρ
is infinite – that the label of u0 is never the empty set and u0 never changes its name.
As u0 is active infinitely often, there is for each i some j ≥ i with aj = 0. As u0 never
has an empty label, we have ri > 0 for all i. Thus 2n is the largest priority that occurs
infinitely often in τ , i.e. τ is accepting. Otherwise let i0 be the least number such that
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u0 is not active in τ(j) for all j > i0. Take the first j′ > i0 such that (trans(ρ))(j′) ∈ F .
Then in τ(j′), u0 has a new child node u1 with l(u1) = {ρ(j′)}. As ρ is infinite, any
node that is labelled with ρ at some point afterwards always has a non-empty label.
Nodes with name less than mj′(u1) can only finitely often have the empty set as label;
similarly, the relevant state from ρ can only finitely often occur in an older sibling of u1,
in which case we move from u1 to some older node. Let uj′′ be a node and let j′′ the
least number least number such that after j′′, no node with name less than mj′′(uj′′) has
an empty label, ρ(j′′′) ∈ lj′′′(uj′′) for all j′′′ ≥ j′′ and there is no j′′′ ≥ j′′ such that ρ(j′′′)
occurs in the label of some sibling u′ of uj′′ with mj′′′(u

′) < mj′′′(uj′′). If u1 is active
infinitely often in τ , then τ is accepting. Otherwise, we repeat the above argumentation.
As compartmentalized Safra trees contain at most n nodes, the argumentation has to be
repeated at most n times, resulting in a chain u0, . . . , un′ of persisting nodes with n′ < n
where ui+1 is a child of ui and eventually no nodes older than u′n are removed. Then un′

is active infinitely often without being removed. Thus max(Inf(α ◦ trans(τ))) = 2(n− n′),
showing that τ is accepting and w ∈ L(B).

Conversely, let w ∈ L(B), i.e. let τ = run(B, w) be accepting. Let τ(i) = (Wi, pi,mi, li)
and let 2e = max(Inf(α ◦ trans(τ))). Then from some point i on, no node with name
less than or equal to e has an empty label and the node we with name e keeps this
name forever and is active infinitely often. Between any two points j′ > j > i with
α((trans(ρ))(j)) = α((trans(ρ))(j′)) = 2e and for all states v ∈ lj′(we), there is a state
u ∈ lj(we) such that v is reachable from u in A by the word w(j)w(j+1) . . . w(j′−1)w(j′)
via a path that uses at least one transition from F ; this is the case since we is active
in the transition from τ(j′ − 1) to τ(j′), meaning that union of the labels of its child
nodes at j′ is just lj′(we). As child nodes are only created for states that are reached
by accepting transitions, there is for every v ∈ lj′(we) some u ∈ lj(we) and a path
u = uj , uj+1 . . . uj′−1, uj′ = v such that ui′+1 ∈ ∆(ui′ , w(i′)) for all j ≤ i′ < j′ and there
is some j ≤ k ≤ j′ with uk+1 ∈ F (uk, w(k)). We construct a tree with root v0 in which
there is a transition from v0 to each state from lj1(we), where j1 ≥ i is the first position
after i at which we is active. Then we inductively add nodes and edges as follows: let
jm+1 be the first position after jm at which we is active. Add a new node for each state
v ∈ ljm+1(we) and add an edge (u, v) for each state u ∈ ljm(we) such that there is a path
from u to v in A that uses an accepting transition; as described above, each newly added
node has at least one predecessor. The constructed graph is infinite but finitely branching
and by König’s Lemma contains an infinite path. By construction, this path defines a
run ρ ∈ run(A,w) that is accepting. �

Corollary 4.1.28. Büchi automata of size n with o compartments and maximal com-
partment size q can be determinized to DPA of size O(o(q − 1)!nn).

4.1.2.3 Determinizing Parity Automata It is well-known (e.g. Theorems 2 and 3
in [27]) that NPA of size n and with k priorities can be translated to equivalent NBA of
size O(nk):
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Definition 4.1.29. For a given PA A = (V,Σ,∆, u0, α) with n = |V | and k > 2 priorities,
we define the NBA B = (W,Σ,∆′, u0, F ) by putting W = V ∪ (V × {0, . . . ,

⌈
k−1
2

⌉
}), and

for v ∈W and a ∈ Σ,

∆′(v, a) =

{
{(w,m) | (v, a, w) ∈ α2m} ∪∆(v, a) if v ∈ V
{(w, l) | (v′, a, w) ∈ α≤2l} if v = (v′, l) /∈ V

Finally, we put F = {((v, l), a, (w, l)) ∈ ∆′ | (v, a, w) ∈ α2l}.

Every accepting run in the automaton B eventually has to assert that some even
priority 2l is the highest priority that occurs from then on and that transitions with this
priority are used infinitely often. Then the automaton moves to a copy of A with the
carrier V2l = {(v, l) | v ∈ V } that represents the union of all 2l-compartments in A. In this
copy, transitions with priority greater than 2l are removed and transitions with priority
2l are accepting. This ensures that B accepts the same language as A (see Lemma 4.1.31).
By definition of B, for all l ≤ dk2

⌉
and each transition t with π3(t) = (v, l) ∈ V2l,

π3[reach(t)] ⊆ V2l and π3[F ] ⊆
⋃
l≤d k

2
e V2l. Thus B has at most dk2

⌉
compartments, each

of size at most o ≤ n, where o is the size of the largest compartment in A.

Example 4.1.30. Let Σ = {a, b}. We use the above construction to transform the PA
A with three priorities that is shown below to the NBA B, depicting accepting transitions
in B with rectangular boxes around their labels. We have L(A) = L(B) = (ab+)∗(ab)ω,
n = 2 and k = 2. We do not depict the states (x, 0) and (y, 0) from the construction
since no accepting transition is reachable from these states so that they cannot be part
of any accepting run.

A:

x

start

y

a, 2 b, 1

b, 3

B:

x

start

y

x, 1

y, 1

a ab

b

a b

Every accepting run in B has to eventually reach the state (y, 1) which corresponds
to the assertion that the looping transition at b is not used any more. We observe
that A is a limit-deterministic PA since {(x, a, y), (y, b, x)} is the only 2-compartment
in A and this compartment is deterministic. Furthermore, B is a limit-deterministic
BA as F = {((x, 1), a, (y, 1))} and reach(F ) = {((x, 1), a, (y, 1)), ((y, 1), b, (x, 1))} is
deterministic. This is not a coincidence; in general, all 2-compartments V2l in the obtained
NBA correspond to a 2l-compartment in the original NPA so that the transformation
preserves limit-determinism (see Lemma 4.1.33 below).

44



4.1 Automata on Infinite Words

Lemma 4.1.31. Let A, B, n and k be as defined above. Then we have L(A) = L(B) and
|W | ≤ n(

⌈
k
2

⌉
+ 1) ≤ nk.

Proof. The bound on the size of B follows trivially.
Let w ∈ L(A), i.e. let there be a run ρ ∈ run(A, w) with max(Inf(α ◦ trans(ρ))) even.

Then there are i and l such that α(trans(ρ)(i)) = 2l, α(trans(ρ)(j)) ≤ 2l for all j ≥ i
and there are infinitely many j ≥ i with α(trans(ρ)(j)) = 2l. Let σ ∈ run(B, pre(w, i))
be a run with σ(i) = ρ(i). We have (ρ(i + 1), l) ∈ ∆′(ρ(i), w(i)). As for all j ≥ i,
α(trans(ρ)(j)) ≤ 2l, the run σ;κ that is defined by (σ;κ)(j′) = σ(j′) for j′ ≤ i and
by (σ;κ)(j′) = (ρ(j′), l) for j > i is an infinite run of B on w. As there are infinitely
many j ≥ i with α(trans(ρ)(j)) = 2l, Inf(trans(σ;κ)) ∩ F 6= ∅. Thus σ;κ ∈ run(B, w) is
accepting.

Let w ∈ L(B), i.e. let there be an accepting run ρ ∈ run(B, w). Since ρ is accepting,
there is a least number i such that ρ(i) = (v, l) for some l and there are infinitely
many j ≥ i with (trans(ρ))(j) ∈ F ∩ Vl, where Vl = {(v, l) ∈W}. Write (trans(ρ))(j) =
((v(j), l), w(j), (v(j + 1), l)) for j ≥ i. Since ρ is infinite, we have for all j ≥ i that
α(v(j), w(j), v(j + 1)) ≤ 2l. Also, there are infinitely many j ≥ i with (trans(ρ))(j) ∈
F and hence α(v(j), w(j), v(j + 1)) = 2l. We thus can define a run τ ∈ run(A, w)
by putting τ(j) = ρ(j) for j < i and τ(j) = vj for j ≥ i where ρ(j) = (vj , l). As
max(Inf(α ◦ trans(τ))) = 2l, τ is accepting. �

When using the improved Safra/Piterman construction described in the preceding
section to determinize PA through NBA, the resulting Safra trees do not contain nodes
with labels that contain states from different compartments in the original parity automata;
thus the number of possible Safra trees is reduced. Indeed, for an input parity automaton
with n states, k priorities, o ≤ n compartments and size of compartments at most q ≤ n,
the tree structure in the resulting Safra trees falls apart into at most o · dk2e disjoint
subtrees each of size at most q; the permutation component of the Safra trees however
ranges over all n+ ndk2e ∈ O(nk) states in the Büchi automaton. By Corollary 4.1.28,
the transformation yields a determinization procedure that determinizes NPA through
NBA to DPA of size O(nk(q − 1)!(nk)nk) ∈ O(n!(nk)nk+1) and with 2nk + 1 priorities.

Corollary 4.1.32. Parity automata can be determinized to DPA of size O(n!(nk)nk+1)
and with O(nk) priorities.

In comparison, the original Safra/Piterman construction yields slightly larger DPA of
size O((nk)!2). As mentioned above, the described transformation from PA to BA also
preserves limit-determinism:
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Lemma 4.1.33. If A and B are as in Definition 4.1.29, then limit-determinism of A
implies limit-determinism of B.

Proof. Let A be limit-deterministic; by Lemma 4.1.6 we have that for all l ≤ dk2e, all
2l-compartments in A are deterministic. By Lemma 4.1.6 it suffices to show that reach(F )
is deterministic. We observe that for each state (v, l) ∈ reach(F ), (v, l) ∈ V2l. As the
2l-compartment of v in A is deterministic, reach(v, l) is deterministic by definition of
∆′. �

We thus obtain the following central result:

Corollary 4.1.34. Limit-deterministic parity automata of size n with k priorities can be
determinized to deterministic parity automata of size O((nk)!) and with O(nk) priorities.

4.2 Infinite Games

We define the abstract notion of two-player games in which infinite plays are allowed
(see e.g. [21] for an overview):

Definition 4.2.1 ((Co-)Büchi and parity games). A parity game is a tuple
(V,E, α), where V = V∃ ∪· V∀, the set of nodes, is the disjoint union of the set of
nodes V∃ for player Élöıse (∃) and V∀ for player Abélard (∀), respectively. Given a node
v ∈ V , E(v) ⊆ V is the set of moves for the player to whom v belongs. The function
α : E → N assigns a priority α(v) to each edge e ∈ E. A Büchi game is a parity game
(V,E, α) with just the two priorities 1 and 2, i.e. with α(e) ∈ {1, 2} for each e ∈ E.
A Co-Büchi game is a parity game with just the two priorities 0 and 1. A play ρ is
a sequence of moves of Abélard and Élöıse or, equivalently, a sequence of nodes of the
game representing the nodes of the game through which the play progresses (with indices
starting at 0 and ρ(i+ 1) ∈ E(ρ(i))); we require that a play is either infinite or ends in
a node from which there are no moves. A partial play is defined in the same way but
as a finite sequence of moves, with no requirements on the last node. The i-th node in
a play ρ is referred to as ρ(i). Finite plays are won by the player who does not own
the last node in the play. An infinite play ρ is won by Élöıse if the highest priority
that occurs infinitely often in ρ is even (formally: max(Inf(α ◦ edge(ρ))) is even, where
(edge(ρ))(i) = (ρ(i), ρ(i+ 1)) ∈ E); otherwise Élöıse loses the play ρ. Player Abélard wins
a play if and only if Élöıse loses it.

An Élöıse- or Abélard-strategy is a partial function s : V ∗V0 ⇀ V or t : V ∗V1 ⇀ V ,
respectively, that assigns a move to each sequence of nodes leading to a node (referred to
as the history of the play) that belongs to the respective player. If the strategy depends
only on the current node, it is said to be history-free or positional. A play (v0 . . . vi)
conforms to an ∃-strategy s if for all j < i such that Élöıse owns vj , vj+1 = s(v0 . . . vj).
We require a strategy to be defined on all partial plays that conform to it. An infinite
play conforms to s if all its finite prefixes conform to s. We have similar definitions of
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plays that conform to Abélard-strategies. Given a node v, a strategy s for Élöıse is a
winning strategy (for Élöıse) at v if Élöıse wins all plays that start at v and conform
to s; in this case we sometimes say shortly that s wins v. Parity games have positional
winning strategies; formally: if there is a strategy with which a player wins some node,
then there is a positional strategy with which the same player wins the node. Solving a
parity game amounts to computing the winning regions, i.e. the sets of nodes at which
Élöıse and Abélard have respective winning strategies. We note that the winning regions
of the two players do not intersect; however, partial games (see Section 4.3.4) may have
nodes in which neither player has a winning strategy.

4.3 Describing Regions in Automata and Games

Automata and games are Kripke structures with one transition relation ∆a for each letter
a ∈ Σ. Thus (multi-modal) µ-calculus formulas can be interpreted over automata and
games. In fact,

– the non-emptiness problem for automata,
– the computation of winning regions of games and
– the verification of winning strategies for games

can all be seen as model checking problems for different µ-calculus formulas.

4.3.1 Fixpoint Formulas over Automata

Let A = (V,Σ,∆, v0, α) be an automaton with k priorities and put

∆i(a, v) = {w ∈ V | (v, a, w) ∈ ∆,α(v, a, w) = i},

where a ∈ Σ, v ∈ V , 0 ≤ i < k. For all interpretations σ that map fixpoint variables to
subsets of V and all a ∈ Σ, we define

[[♦iaX]]σ = {v ∈ V | ∆i(a, v) ∩ σ(X) 6= ∅} [[�iaX]]σ = {v ∈ V | ∆i(a, v) ⊆ σ(X)}

[[♦iX]]σ =
⋃
a∈Σ

[[♦iaX]]σ [[�iX]]σ =
⋂
a∈Σ

[[�iaX]]σ

Let ψ be a µ-calculus formula that uses only modal operators ♦ia, �
i
a, ♦ and � that are

directly applied to fixpoint variables. Then we define the extension [[ψ]]A ⊆ V of ψ in A
in the standard way.

Definition 4.3.1 (Non-emptiness regions of CBA). For Co-Büchi automata, we
have ∆0 = F and ∆1 = F . We define the formula

φCBA := µX1.νX0.
∨

i∈{0,1}

♦iXi,
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expressing the existence of an infinite path that contains only finitely many non-accepting
transitions. The non-emptiness region of the Co-Büchi automaton A is just [[φCBA]]A and
consists of those states that accept a non-empty language, i.e. at least one word; the set
[[¬φCBA]]A is the emptiness region of A and consists of states that do not accept any word.

For any state v ∈ [[φCBA]]A, we can extract an accepting run ρ, i.e. an infinite path
that starts at v and from some point on avoids transitions from F forever. Then a word
w that is accepted by v can be read off from ρ. The non-emptiness region of CBA can
also be specified by an alternation-free formula, e.g. we have

φCBA = µX. (♦1X ∨ νX. (♦0X)).

Definition 4.3.2 (Non-emptiness regions of BA). For a Büchi automaton A, tran-
sitions with priority 2 are accepting, so we have ∆2 = F and ∆1 = F . The formula

φBA := νX2.µX1.
∨

i∈{1,2}

♦iXi

specifies the non-emptiness region of A.

The formula states the existence of some accepting run by expressing the existence
of an infinite path on which infinitely many accepting transitions are passed. For any
state v ∈ [[φBA]]A, we can extract an accepting run ρ, i.e. an infinite path that starts at v
and visits some state from F infinitely often. We note that φBA is not equivalent to any
alternation-free formula.

Definition 4.3.3 (Non-emptiness regions of PA). Let A = (V,Σ,∆, v0, α) be a
parity automaton. The non-emptiness region of parity automata can be specified by the
formula

φPA := ηk−1Xk−1. . . . η1X1.η0X0.
∨

0≤i<k
♦iXi,

where for 0 ≤ i < k, ηi is ν if i is even and µ if i is odd, that is, the k fixpoint operators
in the formula are alternating between least and greatest fixpoints, where the innermost
fixpoint operator is a greatest fixpoint operator.

The formula expresses the existence of an infinite path on which the highest priority
that occurs infinitely often is even. Hence [[φPA]]A is just the set of states that accept a
non-empty language. For any state v ∈ [[φPA]]A, we can extract an accepting run ρ, i.e.
an infinite path that starts at v and uses some transition with even priority i infinitely
often but uses all transitions with priority greater than i only finitely often.

We observe that φPA is a formula with alternation depth k. However, like all region
formulas for the automata that we have considered, the non-emptiness formula for PA
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utilizes only existential modal quantification and no universal modal quantification. The
non-emptiness region of PA thus can equivalently be specified by a formula with alternation
depth just 2. This mirrors the transformation from PA to equivalent NBA as defined in
Definition 4.1.29. In the same way in which NBA are as expressive as NPA (both can
recognize all ω-regular languages), the box-free µ-calculus restricted to alternation-depth
2 is as expressive as the box-free µ-calculus with arbitrary alternation-depth.

Fact 4.3.4. We have the following logical equivalence:

φPA =
∨

0≤i<k,i even
(µX3.νX2.µX1.♦

iX2 ∨
∨
j<i

♦jX1 ∨
∨
j>i

♦jX3)

This formula has alternation-depth 3. The outermost least fixpoint can be replaced by
an initial EF operator, so we even obtain the equivalence

φPA = EF
∨

0≤i<k, i even
(νX2.µX1. ♦

iX2 ∨
∨
j<i

♦jX1).

Definition 4.3.5. Dually, the set of nodes that are are non-empty in a minimal priority
parity automaton, can be specified by the formula

φPAm = EF
∨

0≤i<k, i even
(νX2.µX1. ♦

iX2 ∨
∨
j>i

♦jX1).

4.3.2 Fixpoint Formulas over Games

Like automata, games (V,E, α) can be seen as Kripke structures (V,E, π) where π
evaluates atoms that indicate ownership of nodes. A problem that is related to game
solving is strategy checking : to check whether some given strategy s wins a node v in
a game A, it suffices to compute the non-emptiness region of the universal automaton
(recall Definition 4.1.1) by imposing strategy s on the game; this non-emptiness region
contains v if and only if s wins v. The adversarial nature of the two players Élöıse and
Abélard complicates the specification of the acceptance region of games since the relevant
formulas now contain boxes and diamonds.

Definition 4.3.6 (Winning regions of games). Let (V,E, α) be a parity game with
k priorities. We put π(∃) = V∃, π(∀) = V∀ and

Ei(v) = {w ∈ V | (v, w) ∈ E,α(v, w) = i},

where v ∈ V , 0 ≤ i < k. For all interpretations σ that map fixpoint variables to subsets
of V and all 0 ≤ i < k, we put

[[♦iX]]σ = {v ∈ V | Ei(v) ∩ σ(X) 6= ∅} [[�iX]]σ = {v ∈ V | Ei(v) ⊆ σ(X)}
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The winning regions of Élöıse in Co-Büchi, Büchi and parity games are specified by
the formulas

φCBG := µX1.νX0.
∨

i∈{0,1}

((∃ ∧ ♦iXi) ∨ (∀ ∧�iXi))

φBG := νX2.µX1.
∨

i∈{1,2}

((∃ ∧ ♦iXi) ∨ (∀ ∧�iXi))

φPG := ηXk−1. . . . µX1.νX0.
∨

0≤i<k
((∃ ∧ ♦iXi) ∨ (∀ ∧�iXi))

The strictness of the alternation hierarchy of the µ-calculus [3] implies in particular that
φPG cannot be expressed by a µ-calculus formula with alternation-depth less than k (and
similarly that φCBG and φBG cannot be expressed as alternation-free formulas).

Definition 4.3.7 (Game time-outs). The nested time-outs from Definition 2.2.6 can
be instantiated to parity games by defining the function f : P(V )k → P(V ) that is used
in the definition by

f(V0, . . . , Vk−1) = [[
∨

0≤i<k
((∃ ∧ ♦iXi) ∨ (∀ ∧�iXi))]]σ

where Vi ⊆ V , σ(Xi) = Vi for 0 ≤ i < k. Then we say that a node v ∈ V has game
time-outs m if v ∈ fm; we write x ∈ gto(m) if x has game time-outs m.

Given a node v with game time-outs m = (mk−1, . . . ,m0), Élöıse has a strategy that
ensures that in every play that starts at v, each odd priority 2i + 1 is visited at most
m2i+1−1 times before a priority greater than 2i+1 is visited. By Lemma 2.2.7, Élöıse wins
a node v ∈ V if and only if there is some vector m such that v has game time-outs m.

Definition 4.3.8 (Strategy checking). Fixing a strategy s for one of the two players
turns a game into a universal automaton. If the strategy is positional, then the resulting
automaton has finitely many states. Thus strategy checking, i.e. the computation of the
set of nodes that are won by some positional strategy, is the same as computing the
non-emptiness region of the according universal automaton.

Let (V,E, α) be a game. Without loss of generality, let s : V∃ → V be a positional
Élöıse-strategy and define

[[�isX]]σ = {v ∈ V∀ | Ei(v) ⊆ σ(X)} ∪ {v ∈ V∃ | s(v) ∈ Ei(v) ∩ σ(X)},

where X is a fixpoint variable; notice that �is acts like standard �i on Abélard-nodes but
imposes the strategy s on Élöıse-nodes, which then have at most one Ei-successor (for
0 ≤ i < k). The regions that Élöıse wins with strategy s in Co-Büchi, Büchi and parity
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games are then defined by the formulas

φCBG(s) := µX1.νX0.
∧

i∈{0,1}

�isXi

φBG(s) := νX2.µX1.
∧

i∈{1,2}

�isXi

φPG(s) := ηk−1Xk−1. . . . η1X1.η0X0.
∧

0≤i<k
�isXi

As mentioned above, these formulas define the acceptance regions of universal Co-Büchi,
Büchi and parity automata and the latter two can thus can be simplified as follows:

φBG(s) = νX. (µX.�1
sX) ∧�1

sX ∧�2
sX

φPG(s) = ηk−1Xk−1. . . . η1X1.η0X0.
∧

0≤i<k
�isXi

= ¬ηk−1Xk−1. . . . η1X1.η0X0.
∨

0≤i<k
♦isXi

= ¬
∨

0<i<k,i odd

EFs(νX2.µX1. (♦isX2 ∨
∨
j<i

♦jsX1))

=
∧

0<i<k,i odd

AGs(µX1.νX0. (�isX1 ∧
∧
j<i

�jsX0)),

where, for 0 ≤ i < k, ηi is ν if i is even and µ otherwise and where ηi is µ if i is even and ν
otherwise; furthermore, EFsψ = µX. (ψ∨

∨
0≤i<k ♦

i
sX) and AFsψ = νX. (ψ∧

∧
0≤i<k�

i
sX).

Notice that universal Büchi automata are the duals of existential Co-Büchi automata
so that in contrast to the situation for existential automata, the acceptance region of
universal Büchi automata can be specified by an alternation-free formula. However,
µX1.νX0.

∨
i∈{0,1}(α(i) ∧ �sXi) cannot be expressed by an alternation-free formula

and hence the region that strategy s wins in a Co-Büchi game cannot be defined by an
alternation-free formula. A universal parity automaton is the complement of an existential
parity automaton in which all priorities have been increased by one. Using Fact 4.3.4, we
can transform this existential NPA to an NBA that has a universal Co-Büchi automaton
as its dual. The acceptance region of this universal Co-Büchi automaton can be specified
by the resulting formula that has alternation depth 2.

By definition, plays ρ of parity games are won by Élöıse if and only if the highest
priority that is passed infinitely often in ρ is even, i.e. if max(Inf(α ◦ trans(ρ))) is even; in
this sense, parity games as defined above are maximal priority parity games. Sometimes
it is convenient to use minimal priority parity games in which Élöıse wins plays ρ for
which the least priority that is passed infinitely often is even, i.e. if min(Inf(α ◦ trans(ρ)))
is even. Regions in such parity games can be defined similarly as the regions in maximal
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priority parity games, but with reversed order of priorities, i.e. with

Ei(v) = {w ∈ V | (v, w) ∈ E,α(v, w) = j − i},

where j = 2d idx(α)
2 e.

4.3.3 Algorithmic Consequences

Given a Kripke structure of size n, the extension of a µ-calculus formula of size O(n)
and with alternation-depth k can be computed in time nO(k). Thus the results from the
previous sections immediately imply the following standard results (see e.g. [21]).

Corollary 4.3.9. The following problems are in PTime:

– the non-emptiness problems of Co-Büchi, Büchi and parity automata,

– computing the winning regions of Co-Büchi and Büchi games,

– the strategy checking problems of Co-Büchi, Büchi and parity games.

Solving parity games is in NP∩Co−NP.

Solving parity games has been shown to even be contained in UP∩Co−UP (see e.g. [21])
and recently an algorithm has been introduced that solves parity games in quasipolynomial
time [5,13].

4.3.4 Partial Automata and Partial Games

A partial (or incomplete) automaton A = (V,U,Σ,∆, v0, α) with k priorities is just an
automaton (V,Σ,∆, v0, α) together with a set U of unexpanded states such that for all
a ∈ Σ and u ∈ U , ∆(u, a) is undefined. Like in complete (i.e. standard) automata, the
partial automaton A accepts a word w if there is an accepting run ρ ∈ run(A, w). But
if there is no such run, it is not necessarily the case that the word is not accepted by
A. This is the case since unexpanded nodes from U can be expanded (i.e. be replaced
with a sub-automaton, possibly using edges that lead back to V ) and may then be part
of an accepting run. The word w is only classified to be not accepted by A if run(A, w)
contains no accepting run and also no finite run that ends in a state from U ; then there
is no way to expand an unexpanded node such that the resulting automaton accepts
w. This means that for each word w, incomplete automata may accept w, refuse w or
neither. For the specification of regions of partial automata by logical formulas, we recall
that U denotes the complement of U in V , i.e. the set of expanded states and put, for all
fixpoint variables X, all a ∈ Σ, all 0 ≤ i < k and all interpretations σ that map fixpoint
variables to subsets of V ,

[[♦iaX]]σ = {v ∈ V | ∆i(v, a) ∩ σ(X) ∩ U 6= ∅} [[�iaX]]σ = {v ∈ V | ∆i(v, a) ⊆ σ(X) ∩ U}

52



4.3 Describing Regions in Automata and Games

and

[[♦iX]]σ =
∨
a∈Σ

[[♦iaX]]σ [[�iX]]σ =
∧
a∈Σ

[[�iaX]]σ

Then in general, [[¬�iψ]] 6= [[♦i¬ψ]] since it may be the case that there is some unexpanded
i-successor, but no expanded i-successor that satisfies ¬ψ.

Similar definitions lead to the notion of partial games and corresponding modal
operators that quantify over moves.

When computing regions of automata or games, the extension of the (negated)
relevant formula contains exactly those states or nodes that are already known to be in
the respective region. This means that the resulting algorithms are directly suitable for
computing the respective regions in partial automata or games as well (a fact that has
previously been noted in e.g. [17]). In particular, this enables on-the-fly game solving
in which a (potentially large) game is constructed move by move and may possibly be
solved before it has been fully constructed.
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5 Satisfiability Checking for the Coalgebraic µ-Calculus

We now equip coalgebraic modal logic as introduced in Chapter 3 with fixpoint operators
and obtain the coalgebraic µ-calculus which was introduced in [7] after previous results in
the direction of coalgebraic fixpoint logic and automata for the relation lifting approach
(cf. [35]) were obtained by Venema [55] and Kupke and Venema [30]. Fixpoint operators
are introduced in the standard way, that is, by extending the syntax of coalgebraic modal
logic with fixpoint variables and fixpoint operators and by interpreting the resulting
formulas as functions; monotonicity of the involved predicate liftings and propositional
operators then guarantees the existence of extremal fixpoints of these functions, allowing
us to interpret the fixpoint operators.
Our primary interest will be in the satisfiability problem of the coalgebraic µ-calculus; this
problem has been shown to be in ExpTime (under mild assumptions) in [7]. Least fixpoint
operators require particular attention when checking satisfiability of formulas as they
need to be satisfied after a finite number of unfolding steps whereas for the satisfaction
of greatest fixpoint operators, infinite unfolding poses no problem. Unfolding of fixpoint
formulas gives rise to new formulas that in turn evolve in the course of a satisfiability
proof. We use the notion of deferrals in the upcoming technical development to denote
formulas that fixpoint formulas may evolve to. We will detail decision procedures for
various fragments of the coalgebraic µ-calculus; these procedures essentially construct
and solve satisfiability games that track deferrals through pre-tableaux, checking for their
eventual satisfaction, thus ruling out reliance on least fixpoints that are never finished.

5.1 The Coalgebraic µ-Calculus

We add fixpoint variables to the syntax of coalgebraic modal logic and require that the
obtained formulas are monotone w.r.t. set inclusion when interpreted as functions. E.g.
the formula φ = > ∧♥(X ∨ ♥Y ) can be seen as a function taking two sets of states A
and B as input and returning [[φ]][X 7→A,Y 7→B] as result, that is, the extension of φ where
X is interpreted as A and Y is interpreted as B.

Definition 5.1.1 (Coalgebraic µ-calculus, syntax). We fix a set V of fixpoint vari-
ables and a similarity type Λ. The set of coalgebraic µ-calculus formulas Cµ(Λ,V) (or
just Cµ) over Λ and V is defined by the following grammar:

Cµ(Λ,V) 3 ψ1, ψ2 ::= > | ⊥ | X | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | ♥ψ1 | µX.ψ1 | νX.ψ1,

where ♥ ∈ Λ and X ∈ V. The size |ψ| of a formula ψ ∈ Cµ is just its length over the
alphabet {>,⊥,∨,∧} ∪ Λ ∪V ∪ {νX. , µX. | X ∈ V}.

Throughout this section, we use η to denote one of the fixpoint operators µ or ν.
We refer to formulas of the form ηX.ψ as fixpoint literals and to formulas of the form
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♥ψ as modal literals. The operators µ and ν bind their variables, inducing a standard
notion of free variables in formulas. We denote the set of free variables of a formula ψ,
i.e. the set of those fixpoint variables that are free in ψ, by FV(ψ). Similarly, the set
BV(ψ) of bound variables of a formula ψ is the set of fixpoint variables X for which ψ
contains some subformula ηX. φ. A formula ψ with FV(ψ) = ∅ is closed and a formula
that is not closed is open. We say that φ occurs free in ψ if φ occurs as a subformula
in ψ that is not in the scope of any fixpoint operator. Given a formula µX.ψ, a free
occurrence of the fixpoint variable X within ψ is referred to as a µ-variable; similarly, for
νX.ψ, free occurrences of X in ψ are ν-variables. We write ψ ≤ φ (ψ < φ) to indicate
that ψ is a (proper) subformula of φ. We refer to µX1.νX0. as the Co-Büchi operator
and to νX2.µX1. as the Büchi operator ; they are to be applied to formulas φ(X0, X1)
and φ(X1, X2) with exactly two free variables X0, X1 and X1, X2, resulting in Co-Büchi
formulas µX1.νX0.φ(X0, X1) and Büchi formulas νX2.µX1.φ(X1, X2), respectively. The
parity operator ηXk−1. . . . µX1.νX0. is applied to arguments φ(X0, X1, . . . , Xk−1) with k
free variables and constructs the parity formula ηXk−1. . . . µX1.νX0. φ(X0, X1, . . . , Xk−1);
as usual, η is ν if k− 1 is even, and µ otherwise. Throughout, we restrict to formulas that
are guarded, i.e. have at least one modal operator between any occurrence of a variable
X and an enclosing binder ηX. (This is standard although possibly not without loss of
generality [14].) Formulas are clean if all fixpoint variables they use are distinct, and
irredundant if X ∈ FV(ψ) for all subformulas ηX.ψ.

Formulas are evaluated over T -coalgebras C = (W, ξ), consisting of a set W of states
and a coalgebra structure ξ : W → T (W ). We assume that each ♥ ∈ Λ comes with a
T -predicate lifting [[♥]] that is monotone w.r.t. set inclusion, i.e. we require that for all
sets U and all A,B ⊆ U ,

A ⊆ B implies [[♥]]UA ⊆ [[♥]]UB.

Furthermore, we require, as before, that Λ contains, for each ♥ ∈ Λ, a dual modal

operator ♥ such that for all U and A ⊆ U , we have [[♥]]U (A) = [[♥]]U (A), recalling that

A = {x ∈ U | x /∈ A} is the complement of A in U ; finally, we require ♥ = ♥.

Definition 5.1.2 (Coalgebraic µ-calculus, semantics). Given a T -coalgebra C =
(C, ξ), an interpretation (of the fixpoint variables) is a partial mapping i : V ⇀ P(C),
assigning a set of states from C to each fixpoint variable X ∈ dom(i). The extension [[φ]]i
of a coalgebraic fixpoint formula φ w.r.t. i (where FV(φ) ⊆ dom(i)) is defined recursively:

[[⊥]]i = ∅ [[>]]i = C

[[X]]i = i(X) [[♥ψ]]i = ξ−1[[[♥]]C [[ψ]]i]

[[ψ1 ∧ ψ2]]i = [[ψ1]]i ∩ [[ψ2]]i [[ψ1 ∨ ψ2]]i = [[ψ1]]i ∪ [[ψ2]]i

[[µX.ψ]]i = LFP[[ψ]]Xi [[νX.ψ]]i = GFP[[ψ]]Xi ,

where [[ψ]]Xi (A) = [[ψ]]i[X 7→A] for A ⊆ C; here, i[X 7→ A](X) = A and i[X 7→ A](Y ) = i(Y )
for X 6= Y . Recall from Definition 2.2.1 that LFP and GFP compute the least and the
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greatest fixpoint of the argument function, respectively. Since the predicate liftings for Λ
are assumed to be monotone w.r.t. set inclusion, we have that for all coalgebraic formulas
ψ that use modal operators from Λ and all functions i that map fixpoint variables to
subsets of C, the function [[ψ]]Xi that maps sets A to [[φ]]i[X 7→A] is monotone w.r.t. set
inclusion so that the above indeed constitutes a definition. Given a closed coalgebraic
fixpoint formula φ and a state x ∈ C, we write C, x |= φ for x ∈ [[φ]]ε, where ε denotes
the empty function. If ψ is closed, then [[ψ]]i does not depend on i, so we just write
[[ψ]]. A coalgebraic µ-calculus formula ψ is satisfiable if there is a coalgebra C = (C, ξ)
and a state x ∈ C such that C, x |= ψ. W.l.o.g., we restrict our attention to clean and
irredundant formulas, when considering the satisfiability of formulas.

Example 5.1.3. We revisit Example 3.1.8 and now consider the logics that we obtain
when adding fixpoint operators to those coalgebraic logics from that example that have
monotone predicate liftings.

1. Extending the logic K of Kripke frames with fixpoint operators yields the standard
uni-modal µ-calculus (also referred to as the relational µ-calculus), containing – as a
simple fragment – the logic CTL with operators AφUψ = µX. (ψ ∨ (φ ∧�X)) and
EφUψ = µX. (ψ ∨ (φ ∧ ♦X)) stating that “on all paths, φ holds until ψ holds” and
“there is a path on which φ holds until ψ holds”, respectively.

2. The serial µ-calculus is obtained by extending the serial logic KD with fixpoint
operators. However, seriality can also be expressed in the standard µ-calculus by
means of the formula AG♦> = νX. (♦> ∧�X).

3. The predicate liftings for classical modal logic E from Example 3.1.8 are not monotone,
so we do not obtain a corresponding µ-calculus.

4. Extending serial monotone modal logic with fixpoint operators yields the serial
monotone µ-calculus, containing Parikh’s game logic [37] as a fragment.

5. The standard (multi-)modal µ-calculus is built over Hennessy-Milner logic HML
and contains formulas such as e.g. νX. µX. (♦aY ∨ ♦bX), stating that there is a
path containing infinitely many a-transitions and only b-transitions between any two
a-transitions.

6. Extending Pauly’s coalition logic with fixpoint operators, we obtain the alternating-
time µ-calculus (AMC) [45] which contains alternating-time temporal logic (ATL) [1]
as a fragment, where in the latter, coalitions are formed by finite sets of agents.

7. The probabilistic µ-calculus [7] is obtained by adding fixpoint operators to probabilistic
modal logic. It contains e.g. modal formulas µX.(φ ∨ LpX) stating that there is a
path with probability p at each step that eventually reaches a state that satisfies φ.

8. While the predicate liftings of the conditional logics mentioned in Example 3.1.8 are
not monotone and we do not directly obtain corresponding µ-calculi, the monotonicity
of formulas can be ensured by requiring that fixpoint variables occur only in the
second arguments of conditional modal operators (allowing formulas such as e.g.
µX. p⇒ X).
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Since we use nâıve substitution (instead of capture avoiding substitution) in Defini-
tion 5.1.2, we need the following lemma to be able to show that the process of unfolding
fixpoint literals preserves the extension of formulas.

Lemma 5.1.4 (Substitution). If BV(ψ) ∩ FV(φ) = ∅, then

[[ψ]]Xi [[φ]]i = [[ψ[X 7→ φ]]]i.

Proof. The proof is by induction over ψ. If ψ is closed, then [[ψ]]Xi [[φ]]i = [[ψ]] = [[ψ[X 7→
φ]]]i. Otherwise, if ψ = X, then [[X]]Xi [[φ]]i = [[φ]]i = [[X[X 7→ φ]]]i. If ψ = Y 6= X,
then [[Y ]]Xi [[φ]]i = [[Y ]]i = [[Y [X 7→ φ]]]i. The cases for disjunction, conjunction and
modal operators are straightforward. If ψ = ηX. θ, then [[ηX. θ]]Xi [[φ]]i = [[ηX. θ]]i =
[[(ηX. θ)[X 7→ φ]]]i. If ψ = ηY. θ for Y 6= X, then [[ηY. θ]]Xi [[φ]]i = η[[θ]]Yi[X 7→[[φ]]i]

= η[[θ[X 7→
φ]]]Yi = [[(ηY. (θ[X 7→ φ]))]]i = [[(ηY. θ)[X 7→ φ]]]i, where the second equality holds since
for all A,

[[θ]]Yi[X 7→[[φ]]i]
(A) = [[θ]]i[X 7→[[φ]]i][Y 7→A]

= [[θ]]i[Y 7→A][X 7→[[φ]]i]

= [[θ]]Xi[Y 7→A][[φ]]i

= [[θ]]Xi[Y 7→A][[φ]]i[Y 7→A]

= [[θ[X 7→ φ]]]i[Y 7→A]

= [[θ[X 7→ φ]]]Yi (A),

where the second equality holds since X 6= Y , the fourth equality holds since by assump-
tion, Y /∈ FV(φ) and the fifth equality is by the induction hypothesis. �

Lemma 5.1.5. If BV(ψ) ∩ FV(ηX.ψ) = ∅, then

[[ηX.ψ]]i = [[ψ[X 7→ ηX.ψ]]]i.

Proof. We show the proof for the case η = µ; the proof for the other case is analogous.
By Lemma 5.1.4 and since LFP[[ψ]]Xi is a fixpoint, we have

[[µX.ψ]]i = LFP[[ψ]]Xi = [[ψ]]Xi (LFP[[ψ]]Xi ) = [[ψ]]Xi [[µX.ψ]]i = [[ψ[X 7→ ηX.ψ]]]i

�

In clean formulas, fixpoint variables are bound at most once, so we have BV(ψ) ∩
FV(ηX.ψ) = ∅ for all subformulas ηX.ψ.

Fact 5.1.6 (Syntactic substitution). If ({X} ∪ BV(ψ)) ∩ dom(σ) = ∅ and for each
Y ∈ FV(ψ), ({X} ∪ BV(ψ)) ∩ FV(σ(Y )) = ∅, then

(ψσ)[X 7→ (φσ)] = (ψ[X 7→ φ])σ.
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Proof. The proof is by induction over ψ. If ψ = X, then note that by assumption
X /∈ dom(σ) so that (Xσ)[X 7→ (φσ)] = X[X 7→ φσ] = φσ = (X[X 7→ φ])σ. If
ψ = Y 6= X, then we have by assumption X /∈ FV(σ(Y )) so that (Y σ)[X 7→ (φσ)] =
σ(Y )[X 7→ φσ] = σ(Y ) = Y σ = (Y [X 7→ φ])σ. The cases for conjunction, disjunction
and modal operators are straightforward. If ψ = ηX.ψ, then ((ηX.ψ)σ)[X 7→ (φσ)] =
(ηX.ψ)σ = ((ηX.ψ)[X 7→ φ])σ. If ψ = ηY. ψ for X 6= Y , then we have by assumption
that Y /∈ dom(σ) and for any Z ∈ FV(ψ), Y /∈ FV(σ(Z)) so that ((ηY. ψ)σ)[X 7→ (φσ)] =
ηY. (ψσ)[X 7→ (φσ)] = ηY. (ψσ[X 7→ (φσ)]) = ηY. ((ψ[X 7→ φ])σ) = (ηY. (ψ[X 7→
φ]))σ = ((ηY. ψ)[X 7→ φ])σ, where the third equality is by the induction hypothesis. �

Definition 5.1.7. We define several fragments of the coalgebraic µ-calculus that are
obtained by imposing various constraints on the syntactic structure of formulas.

1. The depth-1 linear (or depth-1 single-use) fragment Cµlin1 is obtained by requiring
that in each least fixpoint formula µX.ψ, X has exactly one free occurrence in ψ and
this occurrence is of the shape ♥X for some ♥ ∈ Λ, where, ♥X is not in the scope of
further modal operators within ψ. Notice that important logics such as CTL, ATL
and PLTL are covered by this fragment.

2. The linear (or single-use) fragment Cµlin is obtained by requiring that for every least
fixpoint formula µX.ψ, X has exactly one free occurrence in ψ and this occurrence
is of the shape ♥X for some ♥ ∈ Λ. Hence every depth-1 linear formula is linear.

3. The flat (or single-variable) fragment Cµflat of the coalgebraic µ-calculus [53,23] is
obtained by requiring that in each least fixpoint formula µX.ψ, the only free fixpoint
variable in ψ is X. Hence every linear formula is flat.

4. The alternation-free fragment Cµaf of the coalgebraic µ-calculus [25] is obtained by
prohibiting formulas in which some subformula contains both a free ν-variable and a
free µ-variable. E.g. µX. µY. (�X∧♦Y ∧νZ.♦Z) is alternation-free but νZ. µX. (�X∧
νY. (♦Y ∧ ♦Z)) is not. Every flat formula is alternation-free.

5. The aconjunctive fragment (introduced for the relational µ-calculus in [28]) Cµac is
obtained by requiring that for every conjunction ψ ∧ φ that occurs as a subformula
of fixpoint literals, at most one of the conjuncts ψ, φ contains an active µ-variable.
Here, an active µ-variable is a fixpoint variable that occurs free in ψ ∧ φ and either is
a µ-variable or is a ν-variable X that occurs free in ψ ∧ φ and can be transformed
to a formula that contains a free µ-variable by replacing X with its binding fixpoint
literal and then repeatedly replacing free ν-variables in the resulting formula with
their binding fixpoint literals.

6. The alternation-free aconjunctive fragment Cµac,af is obtained by requiring both,
alternation-freeness and aconjunctivity. Linear formulas are alternation-free and
aconjunctive.

7. When no syntactic restrictions are imposed, we obtain the full coalgebraic µ-calculus
Cµ.

The following diagram shows the relation between the various fragments of the
coalgebraic µ-calculus:
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5.2 Satisfiability Games for the Coalgebraic µ-Calculus

When deciding the satisfiability of a coalgebraic fixpoint formula, it is necessary to
construct a model for or a refutation of the formula. This can be achieved by checking
whether it is possible to construct a structure (labelled with subsets of the Fischer-
Ladner closure – see Definition 5.2.8 or [29] – of the input formula) such that the label of
some node in the structure contains the input formula and such that all least fixpoint
literals from the labels of nodes are satisfied after a finite number of unfolding steps. In
the relational setting, such structures have been referred to as tableaux [14]; here we
generalize this concept to the coalgebraic setting and refer to such structures as timed-out
tableaux ; relying on the time-outs, models can be extracted from timed-out tableaux.
Thus it is sufficient if successful runs of satisfiability checking algorithms guarantee the
existence of a timed-out tableau for the input formula. However, timed-out tableaux
cannot be extracted directly from pre-tableaux (that is, labelled graphs that are obtained
by repeatedly applying the standard tableau rules (including fixpoint unfolding rules)
to labels until every node is expanded). This is the case since pre-tableaux may contain
so-called bad branches [14], that is, cycles in which satisfaction of least fixpoint literals is
postponed indefinitely.

Remark 5.2.1 (No filtration). Related to this is the observation that timed-out
tableaux may contain different nodes with different time-out information but iden-
tical labels. It was shown e.g. in [10] that in the construction of a model for a given
satisfiable fixpoint formula in the relational setting, the standard method of filtering
([2]) pre-tableaux (as supplied by any successful run of a standard satisfiability checking
algorithm) through the Fischer-Ladner closure and then imposing coherent successor
structures (in which modal operators are satisfied) on the obtained carrier sets fails.
There is no way to ensure the satisfaction of least fixpoint literals since the filtration
process may identify nodes with identical labels but different time-out information; hence
the resulting filtered structures may have loops in which some least fixpoint literal is not
satisfied.

Thus satisfiability checking procedures for the relational µ-calculus, such as the one
described in [14] typically employ automata theoretic methods to detect and avoid the
mentioned bad branches. To this end, tracking automata [14] are used to nondeterminis-
tically track single formulas through pre-tableaux and recognize the bad branches. As
branches are infinite paths, these tracking automata are automata on infinite words
(where letters identify single rule applications and choices of conclusion nodes in pre-
tableaux); the acceptance conditions of tracking automata are Co-Büchi condition for
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alternation-free logics and Büchi conditions for logics that allow alternation of least
and greatest fixpoints. Since we want to obtain timed-out tableaux in which no branch
contains any unsatisfied fixpoint formula, we have to track formulas through pre-tableaux
simultaneously. This can be achieved by first determinizing and then complementing
the tracking automata. The resulting automata then recognize the good branches in
pre-tableaux, i.e. branches that do not contain unsatisfied least fixpoint formulas; these
good branches may then be used to construct timed-out tableaux. Thus satisfiability
games over the carriers of the determinized and complemented tracking automata can be
used to decide whether timed-out tableaux, i.e. pre-tableaux in which all branches are
good branches, exist.

Interestingly, the construction of satisfiability games via automata works in (almost)
the same way for the relational and the coalgebraic µ-calculus. That is, the structure of
satisfiability proofs for µ-calculi appears to be largely independent of the concrete modal
logics over which the calculi are built.

We now give a short overview of the game methods that we obtain for the various
fragments of the coalgebraic µ-calculus from Definition 5.1.7. Here we make use of the
automata theoretic concepts, constructions and results from Chapter 4. For a detailed
definition of the satisfiability games, see Sections 5.2.3 and 5.2.3 below. In the following,
we let n and k denote the size and the alternation-depth (see Definition 5.2.9 below) of
input formulas, respectively.

1. In the depth-1 fragment Cµlin1, bad branches can be recognized by limit-stationary
CBA of size n. By Lemma 4.1.13, these automata can be determinized to DBA of size
at most n · 2n; models have size at most n · 2n. In the relational case, the resulting
Co-Büchi games can be solved in time 2O(n).

2. In the flat and alternation-free fragments Cµflat and Cµaf , respectively, we need
NCBA to recognize bad branches in pre-tableaux. By Lemma 4.1.18, these automata
can be determinized to DBA of size at most 3n; models have size at most 3n. In the
relational case the resulting Co-Büchi games can again be solved in time 2O(n).

3. In the alternation-free and aconjunctive fragment Cµac,af , we can directly use the
method from the previous item to decide satisfiability and obtain models of size 3n.
However, it is also possible to define smaller satisfiability games via focusing : instead
of determinizing tracking automata, we can rely on aconjunctivity to directly define
DCBA that track single formulas. Then it is possible to define satisfiability games
that focus single formulas but in which Abélard is allowed to do the refocusing, i.e. to
choose any least fixpoint formula as new focus whenever the previous focus has been
finished. The nodes in the resulting Co-Büchi games are sets of formulas annotated
with single formulas; hence they are of size at most n · 2n. However, the construction
of timed-out tableaux from winning strategies in the these games is more involved
than for standard games as there may be two (or more) refocusing moves at a node
in the game that correspond to the same application of a tableau rule. Thus the
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obtained models are of size at most n · 3n, which means that they are unnecessarily
large.

4. In the linear fragment Cµlin, bad branches can be recognized by limit-linear CBA of
size n. By Lemma 4.1.13, these automata can be determinized to DBA of size at most
n2 · 2n; models have size at most n2 · 2n. In the relational case, the resulting Co-Büchi
games can be solved in time 2O(n). Alternatively, one also can use the satisfiability
games via focusing of size at most n · 2n as described in item 4.

5. In the aconjunctive fragment Cµac, bad branches can be recognized by limit-
deterministic PA. We use Lemmas 4.1.31 and 4.1.33 to translate these tracking
automata to equivalent limit-deterministic BA of size at most nk; then we use the
permutation determinization method and the accompanying Theorem 4.1.23 to obtain
equivalent DPA. We refer to the resulting satisfiability games as permutation games.
The DPA are of size at most e · (nk)! and have nk + 1 priorities; satisfiable (weakly)
aconjunctive formulas have models of size at most e · (nk)!. In the relational case, the
games can be solved in time O((nk)!nk+1).

6. In the full coalgebraic µ-calculus Cµ, bad branches can be recognized by general NPA.
We use Lemma 4.1.31 to translate them to equivalent NBA of size at most nk; then we
use the compartmentalized Safra/Piterman construction and Theorem 4.1.27 to obtain
equivalent DPA. The resulting DPA are of size at most n!(nk)nk+1 and have nk+1 pri-
orities; satisfiable coalgebraic fixpoint formulas have models of size at most n!(nk)nk+1.
In the relational case, the games can be solved in time O((n!(nk)nk+1)nk+1).

As these game methods construct satisfiability games by determinizing automata,
the size of the resulting games is exponential in the size of the input formulas. While
the search space grows exponentially with the input formula’s sizes, actual models or
refutations may be reasonably small. Thus it is desirable to make the methods work
on-the-fly ; by this we mean that the determinized automata and the corresponding
games are constructed step by step and that the resulting partial satisfiability games (c.f.
Section 4.3.4) can be solved at any point. To this end, we will now introduce a so-called
global caching algorithm that enables on-the-fly construction and solving of satisfiability
games for (fragments of) the coalgebraic µ-calculus.

5.2.1 A Global Caching Algorithm

The term global caching describes a family of single-pass tableau algorithms [18,20]
that build graph-shaped pre-tableaux in so-called expansion steps, with no label ever
generated twice, and attempt to terminate before the pre-tableaux are completely ex-
panded by means of intermediate propagation of satisfiability and/or unsatisfiability
through partially expanded pre-tableaux. In terms of games, the propagation step in
global caching algorithms corresponds to solving partial games. Global caching offers
room for heuristic optimization, regarding standard tableau optimizations as well as
the order in which expansion and propagation steps are triggered, and has been shown
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to perform competitively in practice; see [20] for an evaluation of heuristics in global
caching for the description logic ALCI. A global caching algorithm for PDL has been
described by Goré and Widmann [19]; finding an optimal global caching algorithm even
for CTL has been named as an open problem as late as 2014 [15] (a non-optimal, doubly
exponential algorithm is known [15]). Here we provide optimal, that is single exponential,
global caching algorithms for (fragments of) the coalgebraic µ-calculus.

We proceed to describe the general concepts and notions of global caching algorithms.
First off, we need some syntactic notions regarding decomposition of fixpoint formulas.
Recall that unfolding a fixpoint literal χ := ηX.ψ results in the formula ψ[X 7→ χ];
eventual satisfaction of this formula potentially depends on the eventual satisfaction of all
those of its subformulas that contain χ. We represent these subformulas in decomposed
form as deferrals [25] of the shape (α, σ) where σ is a sequence of substitutions that
replace fixpoint variables with fixpoint literals and where α is an open subformula that
occurs free in the fixpoint literal from the first substitution in σ. Before we formally
define deferrals, we consider an example.

Example 5.2.2. Consider the three nested fixpoints

χ1 := µX.ψ1 χ2 := νY.ψ2 χ3 := µZ.ψ3

where

ψ1 = p ∨�χ2 ψ2 = q ∧ ♦χ3 ψ3 = r → ♦(X ∧ (Z ∨ Y )).

Unfolding χ1 results in the formula ψ1[X 7→ χ1]. This formula contains the greatest
fixpoint literal χ2[X 7→ χ1] = (νY.ψ2)[X 7→ χ1] = νY.(ψ2[X 7→ χ1]) as a subformula,
which in turn unfolds to (ψ2[X 7→ χ1])[Y 7→ νY.(ψ2[X 7→ χ1])] = (ψ2[Y 7→ χ2])[X 7→ χ1].
Finally (ψ2[Y 7→ χ2])[X 7→ χ1] contains (χ3[Y 7→ χ2])[X 7→ χ1] = ((µZ.ψ3)[Y 7→
χ2])[X 7→ χ1] = (µZ.(ψ3[Y 7→ χ2]))[X 7→ χ1] = µZ.((ψ3[Y 7→ χ2])[X 7→ χ1]) as a
subformula that in turn unfolds to ((ψ3[Z 7→ χ3])[Y 7→ χ2])[X 7→ χ1]. All the mentioned
formulas may be relevant for the satisfaction of χ1 at some state. We will define deferrals
in such a way that

(ψ1, [X 7→ χ1])

(ψ2, [Y 7→ (χ2[X 7→ χ1]), X 7→ χ1])

(ψ3, [Z 7→ ((χ3[Y 7→ χ2])[X 7→ χ1]), Y 7→ (χ2[X 7→ χ1]), X 7→ χ1])

are χ1-deferrals (since they all belong to the outermost fixpoint χ1) that induce the
above-mentioned formulas.

Definition 5.2.3 (Sequential unfolding). Given two substitutions σ and κ, we define
their composite σ;κ as σ;κ(X) = (σ(X))κ for all X ∈ V.

Given fixpoint literals χi = ηXi. ψi, i = 1, . . . , n, we say that a substitution σ =
[X1 7→ χ1]; . . . ; [Xn 7→ χn] sequentially unfolds χn if χi <f χi+1 for all 1 ≤ i < n, where
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we write ψ <f ηX. φ if ψ ≤ φ and ψ is open and occurs free in φ (i.e. σ unfolds a nested
sequence of fixpoints in χn innermost-first). We define |[X1 7→ e1]; . . . ; [Xn 7→ en]| = n.
We say that a formula χ is irreducible if for every substitution [X1 7→ χ1]; . . . ; [Xn 7→ χn]
that sequentially unfolds χn, we have that χ = χ1([X2 7→ χ2]; . . . ; [Xn 7→ χn]) implies
n = 1 (i.e. χ = χ1). An eventuality is an irreducible closed least fixpoint literal. Given a
formula α and a substitution σ = [X1 7→ e1]; . . . ; [Xn 7→ en], the pair (α, σ) induces the
formula ασ.

Note that sequential unfolding is not stable under α-equivalence, i.e. if [X1 7→
χ1]; . . . ; [Xi 7→ χi]; . . . ; [Xn 7→ χn] sequentially unfolds χn, then [X1 7→ χ1]; . . . ; [Xi 7→
χ′i]; . . . ; [Xn 7→ χn] does in general not sequentially unfold χn, where χ′i is obtained from
χi by renaming bound fixpoint variables.

A fixpoint literal is irreducible if it is not an unfolding ψ[X 7→ ηX.ψ] of a fixpoint
literal ηX.ψ. In particular we have

Lemma 5.2.4. Every clean irredundant fixpoint literal is irreducible.

Proof. Let χ be a clean irredundant fixpoint literal. If χ is of the shape χ = χ1([X2 7→
χ2]; . . . ; [Xn 7→ χn]) where [X2 7→ χ2]; . . . ; [Xn 7→ χn] sequentially unfolds χn and where
χ1 = ηX1. ψ1, then χ1 ≤ χn by Lemma 5.2.7 below, and since χ is clean and hence binds
the fixpoint variable X1 just once, we have n = 1. �

Recall that we assume cleanness for target formulas and hence all closed fixpoint
operators in target formulas are irreducible.

Definition 5.2.5 (Deferrals). A formula ψ belongs to a closed irreducible fixpoint θn,
or is a θn-deferral, if ψ = ασ for some substitution σ = [X1 7→ θ1]; . . . ; [Xn 7→ θn] that
sequentially unfolds θn and some α <f θ1. We denote the set of θn-deferrals by dfr(θn).
Given a deferral ασ, we refer to α and σ as the base and the sequence of the deferral,
respectively.

Example 5.2.6. The substitution σ = [Y 7→ µY. (�X ∧ ♦♦Y )]; [X 7→ θ] sequentially
unfolds the eventuality θ = µX. µY. (�X ∧ ♦♦Y ), and (♦Y )σ = ♦µY. (�θ ∧ ♦♦Y ) is a
θ-deferral.

The formula φ = νX. (p ∨�ψ) with ψ = µY. (X ∧ ♦Y ) is irreducible and closed. For
an example of a reducible fixpoint literal, consider the least fixpoint literal

ψ[X 7→ φ] = µY. (X ∧ ♦Y )[X 7→ φ]

= µY. (νX. (p ∨�(µY. (X ∧ ♦Y ))) ∧ ♦Y.

Notice how ψ[X 7→ φ] binds Y twice and is induced by the pair (ψ, [X 7→ φ]), where
[Y 7→ ψ]; [X 7→ φ] sequentially unfolds φ.

In the following we will consider all deferrals to be in decomposed form, i.e. given a
formula ψ that belongs to some closed irreducible fixpoint literal θ, so that ψ = ασ for
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appropriate α and σ according to Definition 5.2.5, we equivalently represent ψ by the
pair (α, σ). This will allow us to directly refer to the base α and the sequence σ of a deferral.

Lemma 5.2.7. Each formula ψ belongs to at most one closed irreducible fixpoint literal
θ, and then θ ≤ ψ.

Proof. For the first part of the claim, we show that if (α, σ) is a θ1-deferral, (β, κ) is a
θ2-deferral and ασ = βκ, then θ1 = θ2. To see this, let ασ = ψ. We show that θ2 ≤ θ1,
the other direction is symmetric. We note that by the second part of the claim, proven
independently below, θ2 ≤ ψ. If θ2 ≤ α, then θ2 < θ1 and hence θ2 ≤ θ1, as required.
If θ2 � α, then let θ2 = µY. φ and σ = [X1 7→ χ1]; . . . ; [Xn 7→ χn] where χn = θ1.
Since θ2 ≤ ψ = ασ but θ2 � α, we are in one of the following two cases: a) There is a
variable X ∈ FV(α) with θ2 ≤ Xσ in which case – since θ2 is irreducible – θ2 ≤ χi ≤ θ1
for some 1 ≤ i ≤ n: otherwise there is some χj = µY.φ1 such that µY.φ1([Xj+1 7→
χj+1]; . . . ; [Xn 7→ χn]) = θ2, which is a contradiction to θ2 being irreducible; b) The
formula α contains a fixpoint literal µY. φ1 with φ1σ = φ. But then θ2 = (µY. φ1)σ and
(µY. φ1, σ) is a sequence over χn which is a contradiction to θ2 being irreducible.

The proof of the second part of the claim is by lexicographic induction over (|σ|, α),
distinguishing cases for α. The interesting case is the fixpoint variable case, i.e. α = Y for
some Y . If |σ| = 1, then we have that σ = [Y 7→ θ] and hence Y σ = θ. If |σ| > 1, then
we have Y σ = χκ where χ is the result of applying the first substitution from σ that
touches Y to Y and where κ consists of the remaining substitutions from σ. We have
|κ| < |σ| and (χ, κ) is a θ-deferral so that the induction hypothesis finishes the proof.�

The requirement that deferrals are built over irreducible closed fixpoint literals implies
that each deferral ψ belongs to at most one irreducible fixpoint literal θ.

Definition 5.2.8 (Fischer-Ladner closure). Given a formula ψ, the Fischer-Ladner
closure [29] FL(ψ) of ψ is defined to be the least set of formulas that contains ψ and
adheres to the following closure conditions:

φ1 ∧ φ2 ∈ FL(ψ) implies φ1, φ2 ∈ FL(ψ),

φ1 ∨ φ2 ∈ FL(ψ) implies φ1, φ2 ∈ FL(ψ),

♥φ ∈ FL(ψ) implies φ ∈ FL(ψ),

ηX. φ ∈ FL(ψ) implies φ[X 7→ ηX. φ] ∈ FL(ψ).

We observe that for all formulas ψ, |FL(ψ)| ≤ |ψ|.

Definition 5.2.9 (Alternation level, alternation depth). The alternation level
al(φσ) := al(σ) of a deferral (φ, σ) with φ not a fixpoint literal is defined inductively over
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|σ|, where al(ε) = al(ε)µ = al(ε)ν = 0,

al(σ; [X 7→ ηX.ψ]) =

{
al(σ)µ + 1 if η = µ

al(σ)ν otherwise

and

al(σ; [X 7→ ηX.ψ])µ =

{
al(σ)µ if η = µ

al(σ)ν + 1 otherwise

al(σ; [X 7→ ηX.ψ])ν =

{
al(σ)ν if η = ν

al(σ)µ + 1 otherwise

Notice that this definition assigns greater numbers to deferrals that occur at higher
nesting depth in the formula to which they belong, i.e. with more alternation inside their
sequence σ. For a deferral (φ, σ) with φ = ηX.ψ, we put al(φσ) = al(X([X 7→ φ];σ)).
Given a formula φ, let q(φ) = max{al(δ) | δ ∈ FL(φ) and δ is a deferral}. The alternation
depth ad(φ) of φ is defined as q(φ) if q(φ) is even and as q(φ) + 1 if q(φ) is odd.

An alternative definition of alternation-depth from [36] counts all occurrences of
alternation of least and greatest fixpoint literals. The function ad defined above however
only takes dependent nestings of least and greastest fixpoint literals into account, where
we say that two nested fixpoint literals are dependent if the inner fixpoint literal mentions
the fixpoint variable that is bound by the outer fixpoint literal as a free variable. Thus
we have that for all (relational) formulas φ, ad(φ) ≤ z where z is the value that the
definition of alternation depth in [36] assigns to φ.

We now fix a closed, irreducible input formula ψ0, let n = |ψ0| and denote the Fischer-
Ladner closure of ψ0 by FL := FL(ψ0); then |FL| ≤ n. Let k = ad(ψ0) be the alternation-
depth of ψ0. Let N = P(FL) be the set of all nodes and S ⊆ N the set of all state nodes,
i.e. nodes that contain only > and modal literals; so |S| ≤ |N| ≤ 2n. We assume a fixed
set of focused nodes C with labelling function l : C→ N. The upcoming global caching
algorithm is parametrized by C and l, and these data have to be supplied to obtain a
concrete instance of the algorithm. For a set G ⊆ N, we define the restriction of C to
nodes with labels from G:

CG = {v ∈ C | l(v) ∈ G}

The intuition behind this definition is that CG contains all focused nodes that correspond
to some node in a partially expanded tableau with set of nodes G.

Global caching algorithms incrementally build sets of nodes but perform fixpoint
computations on P(C), essentially computing winning regions of the corresponding
satisfiability games on-the-fly.
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The upcoming global caching algorithm will use the following standard non-modal
tableau rules in the expansion step. We adapt the notion of tableau rules from Defini-
tion 3.1.11 to accommodate the unfolding of fixpoints. To this end, we fix a set B of
rule variables. Each rule consists of one premise (i.e. a formula built over variables from
B using only the operators ∨, ∧ and ηX.) and a set of conclusions (i.e. a set of sets of
variables from B and constructs of the shape a[X 7→ ηX. a] for a ∈ B) and the rules will
be interpreted AND-OR style, i.e. to show satisfiability of a set of formulas Γ , it will be
necessary to show that every rule application that matches Γ has some conclusion that
is satisfiable.

(⊥)
⊥

(∧)
a ∧ b
a, b

(∨)
a ∨ b
a b

(∨)
ηX. a

a[X 7→ ηX. a]

We refer to the set of the non-modal rules by Rp and additionally assume a one-step sound
and one-step complete set of clean modal tableau rules Rm (recall Definition 3.1.12) and
put R = Rp ∪Rm. We usually write rules with premise Γ and conclusion Σ = Γ1, . . . , Γn
in sequential form, i.e. as (Γ/Σ).

Definition 5.2.10 (Matching rule applications, conclusions). Let ψ be a formula.
Given a set of formulas Γ ⊆ FL(ψ), let R(Γ ) = ((R1, σ1), . . . , (Rn, σn)) denote the list
of all applications of rules from R that match Γ , i.e. all pairs (Ri, σi) with Ri =
(Γ0/Γ1, . . . , Γl) ∈ R and Γ0σi ⊆ Γ , where σi maps rule variables to formulas from FL(ψ).
Here, (a[X 7→ ηX. a])σ = σ(a)[X 7→ ηX. σ(a)] for rule variables a ∈ B. For a set S of
tableau rules, the set of conclusions of Γ under S is

Cn(S, Γ ) = {{Γ1σ, . . . , Γnσ} ∈ P(P(FL(ψ))) | (Γ0/Γ1 . . . Γn) ∈ S, Γ0σ ⊆ Γ}.

We define Cn(Γ ) as Cn(Rm, Γ ) if Γ is a state node and as Cn(Rp, Γ ) otherwise. A set
N ⊆ N of nodes is fully expanded if for each Γ ∈ N ,

⋃
Cn(Γ ) ⊆ N .

Definition 5.2.11 (Formula tracking). We say that a formula ψ is principal in the
application (R, σ) of a rule R = (Γ0/Γ1, . . . , Γl) ∈ R if ψ ∈ Γ0σ. To track single formulas
through rule applications, we define a function Tr : FL×code(ψ0)→ P(FL); here, code(ψ0)
is assumed to contain encodings of all tuples (R, σ, i) where (R, σ) is a rule application
and i ≤ l identifies the i-th conclusion of (R, σ), i.e. Γiσ. For a given rule application
(R, σ), we also define the set

code(R, σ) = {code(R, σ, j) ∈ code(ψ0)}.

Given a tuple (R, σ, i) with R = (Γ0/Γ1, . . . , Γl), i ≤ l, we define Tr(ψ, code(R, σ, i)) = ∅
if R ∈ Rm and ψ is not principal in (R, σ); otherwise, if R ∈ Rp and ψ is not principal
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in (R, σ), then we put Tr(ψ, code(R, σ, i)) = {ψ}. If ψ is principal in (R, σ), then we put

Tr(ψ, code(R, σ, i)) =



∅ if ψ = ⊥ and R = (⊥)

{ψ1, ψ2} if ψ = ψ1 ∧ ψ2 and R = (∧)

{ψi} if ψ = ψ1 ∨ ψ2 and R = (∨)

{ψ1[X 7→ ψ]} if ψ = ηX.ψ1 and R = (η)

{ψ1} if ψ = ♥ψ1, R ∈ Rm and

∃b ∈ Γi.♥b ∈ Γ0, σ(b) = ψ1

As there are up to the equivalence of conclusions only finitely many rule applications
to subsets of the Fischer-Ladner closure and since each rule application has finitely many
conclusions, we can always choose code(ψ0) in the above definition to be a finite set.
In the relational case, we have just six rules (the five non-modal rules plus one modal
rule), each rule has at most two conclusions and rule applications can be identified by
designating a single formula that is principal to the rule application; hence we can put
code(ψ0) = {1, . . . , 5} × FL × {1, 2} so that we have |code(ψ0)| ≤ 10n ∈ O(n). In the
coalgebraic case, we typically assume ExpTime-tractability ofRm (recall Definition 3.2.3),
which guarantees that we can choose a set code(ψ0) with |code(ψ0)| ≤ 2p(n) where p is a
polynomial function; this is a crucial property for obtaining an ExpTime satisfiability
global caching algorithm in the following.

Definition 5.2.12 (Tracking function). We parametrize our algorithm with a num-
ber k ∈ N and a prioritized function track : C× code(ψ0)× {0, . . . , k − 1} → P(C), that
tracks focused nodes through rule applications so that for all focused nodes v ∈ C and
all codes code(R, σ, j) ∈ code(ψ0) with (R, σ) ∈ R(l(v)), track(v, code(R, σ, j), i) denotes
the set of focused nodes that can result when tracking the focused node v through the
rule application (R, σ) that matches l(v) and by choosing the j-th conclusion of that
application, with the requirement that the respective transition has priority i.

We next introduce the functions underlying the fixpoint computations for propagation of
satisfiability and unsatisfiability.

We assume that a number k of priorities is given, where for 0 ≤ i < k, transitions
from v to some w ∈ track(v, code(R, σ, j), i) are said to have priority i.

Definition 5.2.13 (Proof transitionals). For a set C ⊆ C of focused nodes, we define
the functions f : (P(C))k → P(C) and g : (P(C))k → P(C) by

f(X) = {v ∈ C | ∀(R, σ) ∈ R(l(v)). ∃c ∈ code(R, σ).∀0 ≤ i < k. track(v, c, i) ⊆ Xi}
g(X) = {v ∈ C | ∃(R, σ) ∈ R(l(v)). ∀c ∈ code(R, σ).∃0 ≤ i < k. track(v, c, i) ∩Xi 6= ∅}

for X = (X0, . . . , Xk−1) ∈ (P(C))k. We refer to C as the base set of f and g.
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That is, a focused node v ∈ C is contained in f(X0, . . . , Xk−1) if there is for each
rule matching l(v) a conclusion indexed by j such that for all priorities 0 ≤ i < k,
track(v, code(R, σ, j), i) ⊆ Xi, where track(v, code(R, σ, j), i) denotes the set of all
focused nodes to which v can evolve with priority i by the respective rule applica-
tion and by choosing the j-th conclusion. Typically, there is just one i such that
track(v, code(R, σ, j), i) 6= ∅ and for this i, track(v, code(R, σ, j), i) consists of just a single
focused node; an exception to this is the situation that a nondeterministic refocusing
step, governed by Abélard, takes place (see Section 5.2.4 below).

Lemma 5.2.14. The proof transitionals are monotone w.r.t. set inclusion, i.e. if Xi ⊆ Yi
for all 0 ≤ i ≤ k − 1, then f(X) ⊆ f(Y) and g(X) ⊆ g(Y), where X = (X0, . . . , Xk−1)
and Y = (Y0, . . . , Yk−1).

Proof. We have

f(X) ={v ∈ C | ∀(R, σ) ∈ R(l(v)).∃c ∈ code(R, σ).∀0 ≤ i < k. track(v, c, i) ⊆ Xi}
⊆{v ∈ C | ∀(R, σ) ∈ R(l(v)).∃c ∈ code(R, σ).∀0 ≤ i < k. track(v, c, i) ⊆ Yi}
=f(Y)

where the inclusion holds since for all 0 ≤ i < k, we have Xi ⊆ Yi by assumption. �

Definition 5.2.15 (Propagation). For G ⊆ N, we define EG, AG ⊆ CG as

EG = ηk−1Xk−1 . . . η1X1.η0X0. f(X0, . . . , Xk−1) and

AG = ηk−1Xk−1 . . . η1X1.η0X0. g(X0, . . . , Xk−1),

where ηi = LFP if i is odd and ηi = GFP otherwise, where ηi = GFP if i is odd and
ηi = LFP otherwise, and where CG is the base set of f and g.

Notice that in terms of the satisfiability games described in the overview in the beginning
of Section 5.2 above, the computation of EG and AG corresponds exactly to solving an
incomplete parity game in which priorities 0 ≤ i < k are assigned to transitions and
that has CG as set of nodes (recall Definition 4.3.6). Player Abélard chooses matching
rule applications, player Élöıse chooses conclusions to these rule applications, and in
satisfiability games via focusing (see Section 5.2.4 below), Abélard additionally chooses
a new focus whenever a refocusing step takes place. The set EG contains nodes v for
which player Élöıse has a strategy to enforce – for each infinite play starting at v – the
parity condition that the highest priority that is visited infinitely often is even; similarly
AG is the winning region of player Abélard in the corresponding game, i.e. contains the
nodes for which player Abélard has a strategy to enforce an infinite play in which the
highest priority that is passed infinitely often is odd; finite plays (i.e. plays that get stuck
in some node) are lost by the player who cannot move.
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Lemma 5.2.16. If G′ ⊆ G, then EG′ ⊆ EG and AG′ ⊆ AG.

Proof. Let G′ ⊆ G. We show EG′ ⊆ EG, the proof of AG′ ⊆ AG is analogous. We denote
by fC the proof transitional with base set C ⊆ G and have that for all X0, . . . , Xk−1 ⊆ G′,

fG′(X0, . . . , Xk−1) ⊆ fG(X0, . . . , Xk−1).

From this we obtain by induction over Kleene numbers and monotonicity of f that for
all X1, . . . , Xk−1 ⊆ G′,

GFPX0. fG′(X0, . . . , Xk−1) ⊆ GFPX0. fG(X0, . . . , Xk−1),

which in turn implies by induction over Kleene numbers and monotonicity of f that for
all X2, . . . , Xk−1 ⊆ G′,

LFPX1.GFPX0. f̂G′(X0, . . . , Xk−1) ⊆ LFPX1.GFPX0. f̂G(X0, . . . , Xk−1).

We repeat this argumentation to eventually obtain EG′ ⊆ EG. �

Lemma 5.2.17. Let G ⊆ N be fully expanded and let C ⊆ CG be the base set of f and
g. For all sets X1, . . . , Xk−1 ⊆ C,

f(X0, . . . , Xk−1) = g(X0, . . . , Xk−1),

where for each Z ⊆ C, Z denotes the complement of Z in C.

Proof. The inclusion “⊆” is immediate. For the inclusion “⊇”, let v ∈ g(X0, . . . , Xk−1)
so that it is not the case that there is (R, σ) ∈ R(l(v)) such that for each c ∈ code(R, σ)
there is 0 ≤ i < k such that track(v, c, i)∩Xi 6= ∅, where, crucially, Xi is the complement
of Xi in C, and not in C. However, since G is fully expanded, we have track(v, c, i) ⊆ C,
which implies that for all (R, σ) ∈ R(l(v)) there is c ∈ code(R, σ) such that for all
0 ≤ i < k we have track(v, c, i) ⊆ Xi, i.e. that v ∈ f(X0, . . . , Xk−1). �

Lemma 5.2.18. Let G ⊆ N be fully expanded. Then EG = AG.

Proof. By Lemma 5.2.17, for all X0, . . . , Xk−1 ⊆ CG, f(X0, . . . , Xk−1) =

g(X0, . . . , Xk−1) so that for fixed X1, . . . , Xk−1 ⊆ CG, (X0 7→ f(X0, X1 . . . , Xk−1))
and (X0 7→ g(X0, X1 . . . , Xk−1)) are complementary (and monotone) functions. We also
know that for complementary monotone functions f ′ and g′, LFPf ′ = GFPg′. Thus we
obtain that for all X1, . . . , Xk−1 ⊆ CG,

LFPX0. f(X0, X1, . . . , Xk−1) = GFPX0. g(X0, X1, . . . , Xk−1),

showing that for all X2, . . . , Xk−1 ⊆ CG, (X1 7→ µX0. f(X0, X1, X2, . . . , Xk−1)) and
(X1 7→ νX0. g(X0, X1, X2, . . . , Xk−1)) are complementary functions, which implies that

GFPX1.LFPX0. f(X0, X1, X2, . . . , Xk−1) = LFPX1.GFPX0. g(X0, X1, X2, . . . , Xk−1);

repeat this argumentation k − 2 further times to obtain EG = AG. �
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Now we are ready to present the generic global caching algorithm. To obtain a concrete
instance of the algorithm, the following data has to be provided:

1. the set of focused nodes C for a fixed input formula ψ0 together with a labelling
function l that returns the labels l(v) ⊆ FL(ψ0) of focused nodes v ∈ C;

2. a number k of priorities;

3. a tracking function track : C× code(ψ0)× {0, . . . , k− 1} → P(C) that tracks focused
nodes through prioritized rule applications;

4. an initial focused node v0 that stands for the input formula ψ0.

The algorithm constructs a partial pre-tableau (see Definition 5.2.22 below), maintaining
sets G,U ⊆ N of expanded and unexpanded nodes, respectively. It computes EG, AG ⊆ CG

in the optional propagation steps; as these sets grow monotonically, they can be computed
incrementally.

Algorithm 5.2.19 (Global caching). Decide satisfiability of a closed formula ψ0.

1. (Initialization) Put G := ∅, Γ0 := {ψ0}, U := {Γ0}.
2. (Expansion) Pick u ∈ U and put G := G ∪ {u}, U := (U \ {u}) ∪ (

⋃
Cn(u) \G).

3. (Intermediate propagation) Optional: Compute EG and/or AG. If v0 ∈ EG, then
return ‘satisfiable’. If v0 ∈ AG, then return ‘unsatisfiable’.

4. If U 6= ∅, continue with Step 2.

5. (Final propagation) Compute EG. If v0 ∈ EG, then return ‘satisfiable’, else ‘unsatisfi-
able’.

Note that in Step 5, G is fully expanded. For purposes of the soundness proof, we note
an immediate consequence of Lemmas 5.2.16 and 5.2.18:

Lemma 5.2.20. If some run of the algorithm without intermediate propagation steps is
successful on input ψ0, then all runs on input ψ0 are successful.

Proof. Let G denote the set of nodes that is created by the algorithm without intermediate
propagation – i.e. without step 3) – and notice that G is fully expanded. Let v0 ∈ EG
and let Gp be the set of nodes created by any run of the algorithm (possibly involving
intermediate propagation). We note that Gp ⊆ G so that Lemma 5.2.16 tells us that
AGp ⊆ AG. As G is fully expanded, Lemma 5.2.18 states that AG = EG. As v0 ∈ EG,
v0 /∈ AGp ⊆ AG = EG, as required. �

Definitions of various instances of this algorithm to concrete fragments of the coalge-
braic µ-calculus can be found in the ensuing sections, together with the generic soundness
and completeness proofs.
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5.2.2 Timed-out Tableaux

We continue to introduce several technical concepts and lemmas that will be used to show
the soundness and completeness of the various instances of the introduced algorithm.

Definition 5.2.21 (Tracking automata). The tracking automaton for ψ0 is the min-
imal priority PA (recall Definition 4.3.5) N(ψ0) = (V,Σ,∆,ψ0, α) where V = FL,
Σ = code(ψ0); the priority function is defined – for t = (ψ, a, ψ′) ∈ ∆ – by
α(ψ, a, ψ′) = al(ψ′) + 1 if ψ = ηX.ψ1 and ψ′ = ψ1[X 7→ ηX.ψ1] and otherwise by
α(ψ) = ad(ψ) + 1 if min(al(ψ), al(ψ′)) > 0 and by α(ψ) = 1 if min(al(ψ), al(ψ′)) = 0; the
transition relation is defined by ∆ = Tr. Letters code(R, σ, j) ∈ Σ identify applications
(R, σ) of tableau rules R and the j-th conclusions of (R, σ).

Given a formula ψ ∈ V , a letter code(R, σ, j) ∈ code(ψ0) and some priority i,
∆i(ψ, code(R, σ, j)) is the set of formulas to which v can be tracked through the rule
application (R, σ) and the choice of the j-th conclusion such that the according transfor-
mation of the formula has priority i. Infinite words over Σ encode infinite sequences of
rule applications and the automaton N(ψ0) accepts those words over Σ that encode a
sequence of rule applications for which there is a way to track a formula such that the
outermost fixpoint that is unfolded infinitely often is a least fixpoint; such sequences are
called bad sequences.

Definition 5.2.22 (Pre-tableaux). A labelled set C with labelling function l : C →
P(FL) such that ⊥ /∈ l(x) for all x ∈ C is a pre-tableau set (for ψ0) if for each x ∈ C
and all (R, σ) ∈ R(l(x)) with R = (Γ0/Γ1, . . . , Γl), there are 1 ≤ j ≤ l and y ∈ C such
that Γjσ ⊆ l(y). Given a function L : C → List(C), the pair (C,L) is a pre-tableau
(for ψ0) if for each x ∈ C and all (R, σ) ∈ R(l(x)), there are 1 ≤ j ≤ n and y ∈ L(x)
such that Γjσ ⊆ l(y); we point out that L(x) ∈ List(C) is a list of elements of C. An
Élöıse-determined pre-tableau (for ψ0) is a pre-tableau (C,L) such that for each x ∈ C
and writing R(l(x)) = ((R1, σ1), . . . , (Rn, σn)), we have L(x) = (y1, . . . , yn) and for each
1 ≤ i ≤ n with Ri = (Γ0/Γ1, . . . , Γl), there is 1 ≤ ji ≤ l such that Γji ⊆ l(yi); furthermore,
we require a function c : C × N→ N that records the choice of conclusion for each rule
application to a node, i.e. with c(x, i) = ji where x, i and ji are as defined above.

In the definition of Élöıse-determined pre-tableaux, it is crucial that for each
node x ∈ C, rule applications (Ri, σi) ∈ R(l(x)) and successors yi ∈ L(x) are
matched by their index, i.e. that we can pick the i-th rule application and the
node that corresponds to this rule application and also know for each node yi ∈ L(x)
that it is obtained from x by the rule application (Ri, σi) (and choice of conclusion c(x, i)).

It will be convenient to use so-called timed-out tableaux as a stepping stone be-
tween models and winning regions in satisfiability games. Timed-out tableaux are Élöıse-
determined pre-tableaux in which no infinite path contains an unsatisfied least fixpoint
formula; to make this property formal, we introduce the notion of tableau automata, which
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use tracking automata to nondeterministically track formulas through Élöıse-determined
pre-tableaux:

Definition 5.2.23 (Tableau automata). Let (C,L) be an Élöıse-determined pre-
tableau for ψ0 and let w0 ∈ C be a node with ψ0 ∈ l(w0). Let ∆ be the transition
function and α the priority function of the nondeterministic tracking automaton N(ψ0)
for ψ0 (see Definition 5.2.21). The tableau automaton A(C,L) = (V ′, Σ,∆′, v0, β) is the
minimal priority PA that is defined by V ′ = {(w,ψ) ∈ C × FL | ψ ∈ l(w)}, Σ = {∗},
v0 = (w0, ψ0) and

∆′((w,ψ), ∗) = {(wi, φ) | wi ∈ L(w), φ ∈ ∆(ψ, code(Ri, σi, ji))},

where (w,ψ) ∈ V ′, R(l(w)) = ((R1, σ1), . . . , (Rn, σn)), L(w) = (w1, . . . , wn), c(w, i) = ji
and code(Ri, σi, ji) encodes the i-th rule application and the choice of the ji-th conclusion
that leads to the node wi; finally, we put β((w,ψ), ∗, (wi, φ)) = α(ψ, code(Ri, σi, ji), φ)
where code(Ri, σi, ji) is the letter that encodes the i-th rule application and the choice of
the ji-th conclusion that leads from w to the node wi such that φ ∈ ∆(ψ, code(Ri, σi, j)).
By invertibility of non-modal rules, we assume that just a single fixed rule is applied to
each unsaturated node.

By construction, a state (w,ψ) in A(C,L) is empty (i.e. does not accept the only
possible word ∗ω) if and only if no infinite L-path that starts at w contains an infinite trace
of ψ in which a least fixpoint literal is unfolded infinitely often while all superincumbent
greatest fixpoint literals are unfolded only finitely often.

Recall that by Definition 4.3.5, a state (v, ψ) ∈ V ′ is empty if and only if it satisfies
the formula

¬φPAm =
∧

1<i<k, i even

AG φi, where φi = µX1.νX0. �
iX1 ∧

∧
j>i

�jX0,

which is, after transformation to an equivalent formula with alternation depth k
(as described in Definition 4.3.3), by Lemma 2.2.7 the case if and only if there is some
time-out vector m such that v has nested time-outs m (for ¬φPAm).

Definition 5.2.24. Let m be a time-out vector, let ψ be a formula and let (C,L) be an
Élöıse-determined pre-tableau. Recalling Definition 2.2.6, we define to(ψ,m) ⊆ C to be
the set of nodes v ∈ C with ψ ∈ l(v) such that (v, ψ) has nested time-outs m for ¬φPAm

in the tableau automaton. For all v ∈ to(ψ,m) there is no accepting run in the tableau
automaton that starts at (v, ψ).

Definition 5.2.25 (Timed-out tableaux). A timed-out tableau for ψ0 is a finite Élöıse-
determined pre-tableau (C,L) for ψ0 with the additional property that the non-emptiness
region of the tableau automaton A(C,L) is the empty set.
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In a timed-out tableau with set of nodes C, we have that for all states (v, ψ) ∈ V ′ in the
according tableau automaton A(C,L), no run in run(A(C,L), (v, ψ), ∗ω) is accepting.

Given a timed-out tableau (C,L) and a pair (v, ψ) with v ∈ C, ψ ∈ l(v), the timed-out
property ensures that on any L-path that starts at v, in any possible trace of ψ along
this path, the lowest alternation-level at which the traced formula is unfolded infinitely
often is even (i.e. that the outermost fixpoint that is unfolded infinitely often is a greatest
fixpoint). Thus a timed-out tableau is an Élöıse-determined pre-tableau that does not
contain bad branches (see Section 5.2.3 below for more details).

As we will now show, a formula is satisfiable if and only if a timed-out tableau
exists for it. To show the forward direction of this equivalence, we first introduce several
concepts that will allow us to construct timed-out tableaux from models.

Definition 5.2.26. For a formula ψ and an interpretation σ, we define ψXσ (φ) =
ψ(σ[X 7→ φ]), (ψXσ )0(φ) = φ and (ψXσ )n+1(φ) = ψXσ ((ψXσ )n(φ)). We say that a coal-
gebra C is stabilizing if for each state x in C, for each formula µX.ψ, each interpretation
σ that is defined on variables from FV(µX.ψ), all formulas φ and all Y ∈ FV(φ), if
C, x |= φ[Y 7→ µX.ψσ], then there is 0 ≤ n ∈ N such that C, x |= φ[Y 7→ (ψXσ )n(⊥)].

We note that fixpoints over finite sets stabilize after finitely many approximation steps
so that finite coalgebras are stabilizing. Importing the finite model property (without
requiring a bound on model size) for the coalgebraic µ-calculus from [7], we can thus
w.l.o.g. restrict our attention to stabilizing coalgebras.

Definition 5.2.27 (Unfolding time-outs). Let C = (C, ξ) be a coalgebra, let (ψ, σ)
be a deferral with σ = [Xj 7→ χj ]; . . . ; [X0 7→ χ0], where χi = ηiXi. ψi. Also let m =
(m0, . . . ,mj) be a vector of length |σ| with mi ≤ n for all 0 ≤ i ≤ j and mi = n for all
0 ≤ i ≤ j with ηi = ν. Finally let x ∈ C be a state with x ∈ [[ψσ]]. Then we say that
(ψ, σ) has unfolding time-outs m at x if x ∈ [[ψ]]iσ(m)

where iσ(m) is defined inductively
by putting iε(m) = ε in the base case (where ε denotes the empty substitution), and by
putting

iσ(m) = iκ(o)[Xj 7→ ([[ψj ]]
Xj
iκ(o)

)mj (∅)],

if ηj = µ, and

iσ(m) = iκ(o)[Xj 7→ [[νXj . ψj ]]iκ(o) ],

if ηj = ν; here o = (m0, . . . ,mj−1) and κ = [Xj−1 7→ χj−1]; . . . ; [X0 7→ χ0]. Thus the first
component of time-out vectors is the most significant component and corresponds to
the outermost fixpoint χ0; this is in contrast to sequences of deferrals in which the last
substitution corresponds to the outermost fixpoint.

Lemma 5.2.28. Let C = (C, ξ) be a stabilizing coalgebra. For all states x ∈ C and all
deferrals (ψ, σ) with |σ| = j and x |= ψσ, there is a least (by lexicographic ordering)
time-out vector (m0, . . . ,mj) such that (ψ, σ) has unfolding time-outs (m0, . . . ,mj) at x.
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Proof. By stabilization, (ψ, σ) has unfolding time-outs (|C|, . . . , |C|) at x. By the well-
ordering ≤l of time-out vectors, there is a least time-out vector (m0, . . . ,mj) such that
(ψ, σ) has unfolding time-outs (m0, . . . ,mj) at x �

If ψ is not a fixpoint literal, then we denote the least (by left-to-right lexicographic
ordering) vector m such that (ψ, σ) has unfolding time-outs m at x by uto((ψ, σ), x)
(uto for unfolding time-out). If ψ is a fixpoint literal ηX. φ, then we put uto((ψ, σ), x) =
uto((X, [X 7→ φ];σ), x).

Fact 5.2.29. Let x |= (µX.ψ)σ. Then

uto((µX.ψ, σ), x) > uto((ψ, [X 7→ µX.ψ];σ), x),

i.e. the unfolding of least fixpoints reduces unfolding time-outs.

Proof. Assume uto((µX.ψ, σ), x) = uto((X, [X 7→ µX.ψ];σ), x) = (m0, . . . ,mj). Then
mj > 0, and since

[[X]]iσ(m0,...,mj) = ([[ψ]]Xiσ(m0,...,mj−1)
)mj (∅)

= [[ψ]]Xiσ(m0,...,mj−1)
(([[ψ]]Xiσ(m0,...,mj−1)

)mj−1(∅)),

we have uto((ψ, [X 7→ µX.ψ];σ), x) = (m0, . . . ,mj − 1) < (m0, . . . ,mj). �

Lemma 5.2.30. If ψ0 is satisfiable, then there is a timed-out tableau for ψ0.

Proof. Let ψ0 be a satisfiable formula, i.e. let there be a finite, stabilizing model C = (C, ξ)
and a state x ∈ C with C, x |= ψ0. We define the labelling function l : C → P(FL) by
putting l(x) = {ψ ∈ FL | C, x |= ψ} for x ∈ C. Furthermore, we define the tableau
structure L : C → List(C) and the choice function c : C × N → N. So let x ∈ C be
a state with R(l(x)) = ((R1, σ1), . . . , (Rn, σn)). For each 1 ≤ i ≤ n, we pick a state
yi and a number c(x, i) as follows. If the i-th rule application is an application of a
non-modal rule, then put yi = x and if the applied rule is not the disjunction rule, then
put c(x, i) = 1, otherwise let the principal disjunction ψ1∨ψ2 and let m := uto(ψ1∨ψ2, x)
so that there is a j ∈ {1, 2} such that uto(ψj , x) = m and put c(x, i) = j. If the i-th
rule application is an application of a modal rule Ri = (Γ0/Γ1, . . . , Γl), then we have,
for each ♥ψ ∈ l(x), a time-out vector m = uto(♥ψ, x). We put B♥ψ = [[ψ]]iσ(m)

and
since ♥ψ has time-outs m at x, we have x ∈ [[♥ψ]]iσ(m)

and hence ξ(x) ∈ [[♥]]B♥ψ.
By Lemma 5.2.31 below, there are 1 ≤ j ≤ l and y ∈ C such that Γjσ ⊆ l(y) and
for each ♥ψ ∈ l(x) with ψ ∈ Tr(♥ψ, code(Ri, σi, j)), we have y ∈ B♥ψ = [[ψ]]iσ(m)

and hence uto(ψ, y) ≤ m = uto(♥ψ, x). Choose yi = y and c(x, i) = j. We define
L(x) = (y1, . . . , yn). By construction, the structure (C,L) together with the function c is
a finite Élöıse-determined pre-tableau. It remains to show that (C,L) also has the required
time-out property, i.e. that the non-emptiness region of the tableau automaton A(C,L)
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is the empty set. Recall from Definition 4.3.5 that the emptiness region of the minimal
priority parity automaton A(C,L) = (V ′, Σ,∆′, v0, α) with priorities 1 to k = ad(ψ0) + 1
is defined by the formula

¬φPAm =
∧

1<i<k, i even

AG φi, where φi = µX1.νX0. �
iX1 ∧

∧
j>i

�jX0.

Thus it suffices to show V ′ = [[¬φPAm ]]. As V ′ ⊆ [[θ]] implies V ′ ⊆ [[AG θ]] for any formula
θ, we have that if V ′ ⊆ [[φi]] for all even 1 < i < k, then V ′ ⊆ [[¬φPAm ]]. Hence we let
1 < i < k be even and show

V ′ ⊆ [[φi]] = [[µX1.νX0. �
iX1 ∧

∧
j>i

�jX0]]

= [[νX0.�
iX1 ∧

∧
j>i

�jX0]]
X1([[φi]])

= [[νX0.�
iφi ∧

∧
j>i

�jX0]] =: U

To show this inclusion, we let uto(m) denote the set of pairs (x, ψ) ∈ V ′ such that ψ = ασ
where (α, σ) is a deferral with x ∈ [[ψ]]iσ(m)

, or such that ψ is not a deferral. We claim
that for all time-out vectors m = (m0, . . . ,mi),

uto(m) ⊆ U,

from which the required inclusion then follows, since for each (x, ψ) ∈ V ′ with ψ a
deferral, there is by Lemma 5.2.28 some m with uto(ψ, x) = m and (x, ψ) ∈ uto(m). To
prove the claim, we proceed by lexicographic induction over m. We show inclusion in
the greatest fixpoint by coinduction, i.e. we show that uto(m) is a postfixpoint of the
function [[�iφi ∧

∧
j>i�

jX0]]
X0 , i.e. that

uto(m) ⊆ [[�iφi ∧
∧
j>i

�jX0]]
X0(uto(m)).

So let (x, ψ) ∈ uto(m) and (y, ψ′) ∈ ∆′j((x, ψ), ∗) for j ≥ i.
If j > i, then we have to show that (y, ψ′) ∈ uto(m). We distinguish upon the shapes

of ψ and ψ′. If ψ = ψ′, then ψ is not principal in the according rule application and
the applied rule is a non-modal rule; then (x, ψ) = (y, ψ′) ∈ uto(m). If ψ = ψ1 ∧ ψ2

and ψ′ = ψq for q ∈ {1, 2}, then (x, ψq) ∈ uto(m) follows from (x, ψ1 ∧ ψ2) ∈ uto(m). If
ψ = ψ1 ∨ ψ2 and ψ′ = ψq for q ∈ {1, 2} with c(x, 1) = q (i.e. Élöıse chooses the disjunct
ψq), then (x, ψq) ∈ uto(m) since c by construction chooses a disjunct that has time-outs
m at x. If ψ = ηX.ψ1 and ψ′ = ψ1[X 7→ ψ], then uto(ψ1[X 7→ ψ], x) ≤ uto(ηX.ψ1, x)
(by Fact 5.2.29, if η = µ and since the unfolding of greatest fixpoints does not change
unfolding time-outs at all) and hence (x, ψ1[X 7→ ψ]) ∈ uto(m). If ψ = ♥ψ1 and ψ′ = ψ1,
then uto(ψ1, y) ≤ uto(♥ψ1, x) by definition of L and c above and hence (y, ψ1) ∈ uto(m).
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If j = i, then we have to show that (y, ψ′) ∈ [[φi]] = U . Since i is even, ψ is a least
fixpoint literal µX. φσ with al(µX. φσ) = i − 1 and we have ψ = (φ[X 7→ µX. φ])σ.
Let p = |σ| + 2. If mp = 0, then ψ has time-out 0 at x for the fixpoint µX. φσ, which
yields C, x |= (X[X 7→ φ0(⊥)])σ and hence C, x |= ⊥, a contradiction. If mp > 0, then
by Fact 5.2.29, uto(µX. φ, x) = uto(X[X 7→ µX. φ], x) < uto(φ[X 7→ µX. φ], x), so that
(x, µX. φ) ∈ uto(m) implies (x, φ[X 7→ µX.φ]) ∈ uto(m′) with m′ < m. By the induction
hypothesis, we have (x, φ[X 7→ µX.φ]) ∈ U , as required. �

Lemma 5.2.31. Let C = (C, ξ) be a coalgebra with labelling function l : C → P(FL)
such that for all x ∈ C, l(x) = {ψ ∈ FL | C, x |= ψ}. Also let x ∈ C be a state. For each
♥ψ ∈ l(x), let B♥ψ ⊆ [[ψ]] be a set with ξ(x) ∈ [[♥]]B♥ψ. Let (Γ0σ/Γiσ, . . . , Γnσ) be an
application of a modal rule R such that Γ0σ ⊆ l(x). Then there exist 1 ≤ j ≤ n and a
state y ∈ C with Γjσ ⊆ l(y) such that for all ♥ψ ∈ l(x), if ψ ∈ Tr(♥ψ, code(R, σ, j)),
then y ∈ B♥ψ.

Proof. Define a renaming κ by κ(b) = a♥σ(b) for ♥b ∈ Γ0 (recall that premises of rules
are clean, i.e. mention every variable at most once). Put

θ = {♥a♥ψ | ♥ψ ∈ l(v)}.

Notice that x ∈ [[θ]]TCτ 6= ∅ for τ(a♥ψ) = B♥ψ. Also, Γ0κ ⊆ θ so that by one-step
soundness, we have an i such that [[Γiκ]]Cτ 6= ∅. Let y ∈ [[Γiκ]]Cτ . For each b ∈ Γi, we
have ♥b ∈ Γ0 for some ♥ (since every variable that occurs in a rule conclusion also occurs
in the premise), and hence y ∈ B♥σ(b) ⊆ [[σ(b)]]. Thus Γiσ ⊆ l(y). Now let ♥ψ ∈ v and
ψ ∈ Tr(♥ψ, code(R, σ, j)). Then there is a b ∈ Γi with ♥b ∈ Γ0 and σ(b) = ψ. But then
κ(b) = a♥ψ, τ(a♥ψ) = B♥ψ and hence y ∈ B♥ψ. �

We will now show the converse direction, i.e. that the existence of a timed-out tableau
for a formula ψ0 implies the existence of a model for ψ0.

Definition 5.2.32 (Propositional entailment). For a finite set Ψ of formulas, we
write

∧
Ψ for the conjunction of the elements of Ψ . We say that Ψ propositionally entails

a formula φ (written Ψ `PL φ) if
∧
Ψ → φ is a propositional tautology, where modal

literals are treated as propositional atoms and fixpoint literals ηX. φ are unfolded to
φ[X 7→ ηX. φ] (recall that fixpoint operators are guarded). A finite set of formulas Ψ
propositionally entails a finite set Φ of formulas (written Ψ `PL Φ) if Ψ `PL

∧
Φ.

Definition 5.2.33 (Pseudo-extension). The pseudo-extension [̂[φ]]W of a formula φ
in a set W of labelled nodes with labelling function l : W → P(FL) is

[̂[φ]]W = {v ∈W | l(v) `PL φ}.

We omit the index if no confusion arises and extend this notion to sets Ψ of formulas by

putting [̂[Ψ ]] =
⋂
ψ∈Ψ [̂[ψ]].
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Definition 5.2.34. We denote by uf (φ) and up(φ) the numbers of unguarded occurrences
of fixpoint and propositional operators in φ, respectively; we extend this notation to sets
of formulas by putting uf (Γ ) =

∑
φ∈Γ uf (φ) and up(Γ ) =

∑
φ∈Γ up(φ).

Definition 5.2.35. Given two sets C,W with C ⊆W , we say that a function L : W →
List(W ) is loop-free functional in C if for all u ∈ C, |L(u)| = 1 and some node c ∈ C is
reachable by L from u.

If L is loop-free functional in C, then there is, for all v ∈ C and u ∈ L(v), exactly one
v′ ∈ C – which we denote by due – such that there is an L-path u = u0Lu1L . . . Lum = v′,
where all ui except um are not contained in C; notice that we allow m = 0.

Definition 5.2.36 (Strong coherence). Let (W,L) be an Élöıse-determined pre-
tableau with labelling function l and let C ⊆ W be a set such that L is loop-free
functional in C. Also, let C = (C, ξ) be a T -coalgebra and let v ∈ C. For a state v ∈ C
with R(l(v)) = ((R1, σ1), . . . , (Rn, σn)) and L(v) = (w1, . . . , wn), we define

rec(φ,♥φ, v) = {dwie ∈ C | φ ∈ Tr(♥φ, code(Ri, σi, c(v, i)))}.

The coalgebra structure ξ is strongly coherent at v if for all formulas ♥φ ∈ FL,

v ∈ [̂[♥φ]]C implies ξ(v) ∈ [[♥]]([̂[φ]]C ∩ rec(φ,♥φ, v)).

The whole coalgebra C is strongly coherent if ξ is strongly coherent at all states v ∈ C;
then we have that for all formulas ♥φ ∈ FL,

[̂[♥φ]]C ⊆ ξ
−1[[[♥]][̂[φ]]C ],

i.e. that for all v ∈ C,

v ∈ [̂[♥φ]]C implies ξ(v) ∈ [[♥]]([̂[φ]]C).

Given an Élöıse-determined pre-tableau (W,L), a set C ⊆W that is loop-free func-
tional in C and a strongly coherent coalgebra (C, ξ), we have rec(φ,♥φ, v) ⊆ L|C(v) for
all v ∈ C and ♥φ ∈ l(v), where L|C = {(v, dwe) | w ∈ L(v)}.

Lemma 5.2.37 (Coalgebra existence). Let (W,L) be an Élöıse-determined pre-
tableau and let C ⊆W be a set such that L is loop-free functional in C. Then there is a
strongly coherent coalgebra over C.

Proof. Let x ∈ C and put θ = {♥a♥α | ♥α ∈ l(x)} and τ(a♥α) = [̂[α]]C ∩ rec(α,♥α, x).

Then we have [[θ]]TW τ ⊆ [[♥]]([̂[α]]C ∩ rec(α,♥α, x)) for each ♥α ∈ l(x); thus it suffices
to show that [[θ]]TW τ 6= ∅. By one-step tableau completeness of Rm, this is the case if
there is, for each rule R = (Γ0/Γ1, . . . , Γn) ∈ Rm and substitution σ such that Γ0σ ⊆ θ,
a 1 ≤ j ≤ n such that [[Γjσ]]W τ 6= ∅. Let R(x) = ((R1, σ1), . . . , (Rn, σn)) and L(x) =
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(w1, . . . , wn). Let (Γ0σ/Γ1σ, . . . , Γnσ) be an application of R with Γ0σ ⊆ θ. We define
κ(b) = α if σ(b) = a♥α and note that (R, κ) induces a rule instance (Γ0κ/Γ1κ, . . . , Γnκ)
with Γ0κ ⊆ l(x). Let i be the number with (R, κ) = (Ri, σi). As (W,L) is an Élöıse-

determined pre-tableau that is loop-free functional in C, we have dwie ∈ ̂[[l(wi)]]C and
l(wi) = Γjκ, where j = c(x, i). Put y = dwie. We have [[Γjσ]]W τ =

⋂
a♥α∈Γjσ τ(a♥α) =⋂

a♥α∈Γjσ([̂[α]]C ∩ rec(α,♥α, x)) and for each a♥α ∈ Γjσ, we have α ∈ Γjκ = l(wi),

y ∈ [̂[α]]C and y ∈ rec(α,♥α, x); the latter follows since dwie = y, l(wi) = Γjκ and – as

we have α ∈ Γjκ – α ∈ Tr(♥α, code(R, κ, j)). Hence we have y ∈ [̂[α]]C ∩ rec(α,♥α, v) for
each a♥α ∈ Γjσ so that y ∈ [[Γjσ]]W τ 6= ∅ and hence [[θ]]TW τ 6= ∅. Put ξ(x) = t for some
t ∈ [[θ]]TW τ . �

Definition 5.2.38. Let (W,L) be a timed-out tableau. Saturated nodes (also referred
to as state nodes) are nodes v ∈ W with ⊥ /∈ l(v) and with the property that for all
formulas ψ1 ∧ ψ2 ∈ l(v), ψ1 ∨ ψ2 ∈ l(v) or ηX.ψ3 ∈ l(v), l(v) contains ψ1 and/or ψ2 or
ψ3[X 7→ ηX.ψ3], respectively. By commutation of the non-modal rules, we can fix an
order on the rule applications to non-state nodes and apply just a single non-modal rule
to such states; furthermore, we apply modal rules only to saturated nodes. Let L′ denote
the relation that is obtained from L in this way. As (W,L) is Élöıse-determined, L′ is
loop-free functional in the set of unsaturated nodes and we can define, for each node
v ∈ W , the next node dve in (W,L) that is saturated as there is exactly one sequence
v = v1 Lv2 . . . vm−1 Lvm = dve for which v1 to vm−1 are unsaturated nodes (note that if
v is saturated, then m = 0 and dve = v).

Lemma 5.2.39. If there is a timed-out tableau (W,L) for ψ0, then ψ0 is satisfiable in a
model of size at most |W |.

Proof. Let (W,L) be a timed-out tableau for ψ0, that is, an Élöıse-determined pre-tableau
for ψ0 such that the non-emptiness region of the tableau automaton A(W,L) is the empty
set. As described in Definition 5.2.38, we assume that the relation L is loop-free functional
at unsaturated nodes. As carrier of the model, we take the set C ⊆W of saturated nodes
from W . As (W,L) is an Élöıse-determined pre-tableau that is loop-free functional in
C, there is by Lemma 5.2.37 a strongly coherent coalgebra C = (C, ξ). By the Truth

Lemma 5.2.45 below, we have that for all ψ ∈ FL, [̂[ψ]] ⊆ [[ψ]] in C, i.e. C is a model for
ψ0. Also, |C| ≤ |W |. �

It remains to prove the Truth Lemma; to show the satisfaction of least fixpoints in C,
we put the time-out information (recall Definition 5.2.26) from A(W,L) to use.

For the rest of the section, we fix a timed-out tableau (W,L) that is loop-free functional
at unsaturated nodes and a strongly coherent coalgebra C = (C, ξ) with C ⊆W over the
saturated nodes from W , as described above.
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Definition 5.2.40. Let v ∈ C be a saturated node, let ψ be a formula with v ∈ [̂[ψ]] and
let m be a time-out vector. If there is a w ∈ W with ψ ∈ l(w) such that dwe = v and
w ∈ to(ψ,m), then we say that v has (not necessarily minimal) time-outs m for ψ and
define uto(ψ,m) ⊆ C as

uto(ψ,m) = {v ∈ C | v has time-outs m for ψ}.

Definition 5.2.41. Let (ψ, σ) be a deferral with σ = [Xj 7→ χj ]; . . . ; [X0 7→ χ0], where
χi = ηiXi. ψi. Also let m = (mk−1, . . . ,mq) be a time-out vector with mi ≤ n for all
q ≤ i < k. We define the interpretation i(σ,m) : V → P(C) by lexicographic induction
over m. For each Xq ∈ V with σ(Xq) = χqκ, where κ = [Xq−1 7→ χq−1]; . . . ; [X0 7→ χ0], if
ηq = µ and mal(χqκ) = 0, then put i(σ,m)(Xq) = ∅; if ηq = µ and mal(χqκ)+1 > 0, then put
i(σ,m)(Xq) = [[ψq]]i([Xq 7→χq ];κ,o) where o = (mk−1, . . . ,mal(χqκ)+1 − 1) < m and if ηq = ν,

then put i(σ,m)(Xq) = uto(χqκ,m) ∩ [̂[χqκ]]. Also put [[ψ]]σm = [[ψ]]i(σ,m)
.

Definition 5.2.42. A formula φ is closed-respected if ̂[[ηX.ψ]] ⊆ [[ηX.ψ]] for each closed

fixpoint literal ηX.ψ < φ. A formula φ is respected if [̂[φ]] ⊆ [[φ]].

Lemma 5.2.43. Let (ψ, σ) be a deferral with σ = [X1 7→ χ1]; . . . ; [Xn 7→ χn], let ψσ be
closed-respected and let m be a time-out vector. Then

uto(ψσ,m) ∩ [̂[ψσ]] ⊆ [[ψ]]σm.

Proof. We proceed by lexicographic induction over (m,ψ), where the first component m =
(mk−1, . . . ,mq) is relevant for the least fixpoint case. We distinguish upon the shape of ψ:
The cases ψ = ⊥ and ψ = > cannot occur since bases of deferrals contain a free fixpoint

variable by definition. If ψ = Xi, then [̂[Xiσ]] = ̂[[σ(Xi)]] = [̂[χiκ]] = ̂[[ψi([Xi 7→ χi];κ)]]
for κ = [Xi+1 7→ χi+1]; . . . ; [Xn 7→ χn], χi = ηiXi. ψi. If ηi = µ, then we note that the
base case that mal(χiκ) = 0 cannot occur since C is built over a timed-out tableau. Hence
we have [[Xi]]σm = [[ψi]]([Xi 7→ χi];κ)m′ , where m′ = (m0, . . . ,mal(χiκ) − 1) < m and we
have uto(ψσ,m) ⊆ uto(ψi([Xi 7→ χi];κ),m′); we are done by the induction hypothesis. If

ηi = ν, then [[Xi]]σm = uto(χiκ,m) ∩ [̂[χiκ]] and we are done. If ψ = ψ1 ∧ ψ2, then

uto((ψ1 ∧ ψ2)σ,m) ∩ ̂[[(ψ1 ∧ ψ2)σ]] = uto(ψ1σ ∧ ψ2σ,m) ∩ [̂[ψ1σ]] ∩ [̂[ψ2σ]]

and

[[ψ1 ∧ ψ2]]σm = [[ψ1]]σm ∩ [[ψ2]]σm.

Let v ∈ uto(ψ1σ ∧ ψ2σ,m) ∩ [̂[ψiσ]] for i ∈ {1, 2}. If ψi is closed, then [̂[ψiσ]] = [̂[ψi]] ⊆
[[ψi]] = [[ψi]]σm since ψσ is closed respected and hence ψi is respected. If ψi is open, then
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we have v ∈ uto(ψiσ,m) and (ψi, σ) is a deferral so that the induction hypothesis finishes
the case. If ψ = ψ1 ∨ ψ2, then we have

uto((ψ1 ∨ ψ2)σ,m) ∩ ̂[[(ψ1 ∨ ψ2)σ]] = uto(ψ1σ ∨ ψ2σ,m) ∩ ([̂[ψ1σ]] ∪ [̂[ψ2σ]])

and

[[ψ1 ∨ ψ2]]σm = [[ψ1]]σm ∪ [[ψ2]]σm.

Let v ∈ uto(ψ1σ ∨ ψ2σ,m) ∩ ([̂[ψ1σ]] ∪ [̂[ψ2σ]]). If ψi is closed for some i ∈ {1, 2}, then

[̂[ψiσ]] = [̂[ψi]] ⊆ [[ψi]] = [[ψi]]σm since ψσ is closed respected and hence ψi is respected, and
we are done; otherwise, since (W,L) is a timed-out Élöıse-determined tableau, a time-out
respecting disjunct is chosen by Élöıse when tracking ψ1σ ∨ ψ2σ through the disjunction

rule, i.e. we have v ∈ uto(ψjσ,m) ∩ [̂[ψjσ]] for c(v′, 1) = j, where v′ ∈ to(ψσ,m) is a
witness node for v ∈ uto(ψσ,m) to which the disjunction rule is applied. As (ψj , σ) is a
deferral, the induction hypothesis finishes the case. If ψ = ♥ψ1, then

uto(ψσ,m) ∩ ̂[[(♥ψ1)σ]] ⊆ {v ∈ uto(ψσ,m) | ξ(v) ∈ [[♥]]([̂[ψ1σ]] ∩ rec(♥ψ1σ, ψ1σ, v)}

⊆ {v ∈ uto(ψσ,m) | ξ(v) ∈ [[♥]]([̂[ψ1σ]] ∩ uto(ψ1σ,m))}

⊆ ξ−1[[[♥]]([̂[ψ1σ]] ∩ uto(ψ1σ,m))]

⊆ ξ−1[[[♥]]([[ψ1]]σm)]

= [[♥ψ1]]σm,

where the first inclusion holds by strong coherence, the second inclusion holds since
if v has time-outs m for ♥ψ1σ, then every state from rec(♥ψ1σ, ψ1σ, v) has time-outs
m for ψ1σ and the fourth inclusion follows by monotonicity of [[♥]] from the induction
hypothesis. If ψ = νXj . ψj , then

uto(νXj . ψjσ,m) ∩ ̂[[(νXj . ψj)σ]] = uto(ψjκ,m) ∩ [̂[ψjκ]]

⊆ [[ψj ]]κm

= [[ψj ]]i(σ,m)[Xj 7→uto(ψσ,m)∩[̂[ψσ]]]

= [[ψj ]]
Xj
i(σ,m)

(uto(ψσ,m) ∩ [̂[ψσ]]),

where κ = [Xj 7→ ψ];σ and the inclusion is by the induction hypothesis, showing

by coinduction that uto(νXj . ψjσ,m) ∩ ̂[[(νXj . ψj)σ]] ⊆ [[νXj . ψj ]]σm, as required. If
ψ = µXj . ψj , then we have

̂[[(µXj . ψj)σ]] = ̂[[(ψj [Xj 7→ ψ])σ]] = [̂[ψjκ]]

and

[[µXj . ψj ]]σm = [[ψj ]]κm′ ,
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where κ = [Xj 7→ ψ];σ and m′ is some time-out vector with m′ ≤ m. As (ψj , κ) is
a deferral and since C is constructed over a timed-out tableau, we have uto(ψσ,m) ⊆
uto(ψjκ,m

′). By the induction hypothesis and since [[µXj . ψj ]]σm = [[ψj ]]κm′ , we have

uto(ψjκ,m
′) ∩ [̂[ψjκ]] ⊆ [[ψj ]]κm′ , which finishes the case since [[µXj . ψj ]]σm = [[ψj ]]κm′ . �

Lemma 5.2.44. All closed fixpoint literals are respected.

Proof. Let ηX. φ be a closed fixpoint literal and notice that (ηX. φ, ε) is a deferral.
We proceed by induction over the depth n of nesting of closed fixpoint literals in
ηX. φ. If n = 1, then ψ contains no closed fixpoint literals and ηX. φ hence is closed-
respected. If n > 1, then any closed fixpoint literal η′Y.φ′ ≤ φ has a depth of nesting
of closed fixpoint literals less than n and is respected by the induction hypothesis so
that ηX. φ is closed-respected. In both cases, Lemma 5.2.43 finishes the proof with
ψ = ηX. φ and σ = ε (i.e. the empty sequence) and m = ε (i.e. the maximal time-out

vector): since C is built over a timed-out tableau, we have [̂[ψε]] ⊆ uto((ψε), ε) and hence

[̂[ψ]] = [̂[ψε]] = uto((ψε), ε) ∩ [̂[ψε]] ⊆ [[ψ]]ε = [[ψ]] where the inclusion is by Lemma 5.2.43.�

Lemma 5.2.45 (Truth). In the coalgebra C, we have [̂[ψ]] ⊆ [[ψ]] for all ψ ∈ FL.

Proof. We proceed by induction over ψ. If ψ = ⊥ or ψ = >, then [̂[ψ]] = [[ψ]] by definition.
For the propositional connectives, the inductive step is straightforward. If ψ = ♥ψ1,

then [̂[♥ψ1]] ⊆ ξ−1[[[♥]][̂[ψ1]]] ⊆ ξ−1[[[♥]][[ψ1]]] = [[♥ψ1]], where the first inclusion holds by
strong coherence of C and the second inclusion follows by monotonicity of [[♥]] from the
induction hypothesis. If ψ = ηX.ψ1, then ψ is a closed fixpoint literal and Lemma 5.2.44
finishes the case. �

Corollary 5.2.46. The formula ψ0 is satisfiable if and only if a timed-out tableau for
ψ0 exists.

5.2.3 Satisfiability Games via Determinization

As we have seen, the existence of timed-out tableaux coincides with the existence of models;
to decide the satisfiability of fixpoint formulas, it thus suffices to construct and solve
suitable satisfiability games that are won by player Élöıse if and only if a timed-out tableau
exists for the respective input formula. The standard approach to obtain such satisfiability
games is to view formulas as alternating tracking automata where Abélard chooses rule
applications and Élöıse chooses conclusions of rule applications; a combination of two
alternating moves induces a single transition in the non-alternating tracking automaton
N(ψ0) from Definition 5.2.21. In this set-up, a formula is satisfiable if and only if Élöıse can
repeatedly choose – for any matching rule application that Abélard chooses – an according
conclusion node such that Abélard cannot enforce a bad branch; then Élöıse has a strategy
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that turns the alternating tracking automaton into a universal automaton in which all
branches are good, i.e. into a timed-out tableau. We refer to these standard satisfiability
games as satisfiability games via determinization for the reason that either the left or
the right conjunct can be tracked through the application of the conjunction rule (∧)
to some conjunction so that the alternating tracking automaton is nondeterministic at
Abélard nodes. To see the alternating tracking automaton as a game however, every rule
application or choice of a conclusion in the pre-tableau has to correspond to exactly
one transition in the alternating tracking automaton, that is, the alternating tracking
automaton has to be deterministic w.r.t. rule applications. Considering some input
formula ψ0, we thus determinize the tracking automaton N(ψ0), obtaining the equivalent
DPA D(ψ0) = (W,Σ, δ′, v0, α

′) with labelling function l : W → P(FL(ψ0)); depending
on the properties of N(ψ0) we may use Safra/Piterman-style determinization or one of
the other determinization methods described in Chapter 4 above. Then we remove all
transitions that do not correspond to matching applications of tableau rules from the
determinized tracking automaton, i.e. we put

δ = {(v, code(R, σ, j), w) ∈ δ′ | (R, σ) ∈ R(l(v))}.

The set δ thus retains just those transitions from δ′ that correspond to matching applica-
tions of tableau rules; we define the automaton D′(ψ0) = (W,Σ, δ, v0, α

′).

Given a pre-tableau (W,L) for ψ0, let w ∈ Σω be an infinite word that encodes an
infinite L-path p = x0, x1, . . . ∈ Wω through (W,L), where l(x0) = {ψ0}; for j ≥ 0,
w(j) = (Rj , σj , ij) then encodes an application of rule Rj = (Γ0/Γ1, . . . , Γl) to l(xj), i.e.
with Γ0σj ⊆ l(xj), Γijσj = l(xj+1) and xj+1 ∈ L(xj). As D′(ψ0) is equivalent to N(ψ0)
when we restrict our attention to words that encode some path through some pre-tableau,
w ∈ D′(ψ0) if and only if there is an infinite sequence Ψ = ψ0, ψ1, . . . of formulas with
ψi+1 ∈ Tr(ψi, w(i)) such that min(Inf(α ◦ trans(Ψ))) is odd and Ψ is a trace of ψ0 through
some branch of some pre-tableau. In other words, D′(ψ0) accepts exactly those words
that encode some bad branch.

Since we are interested in detecting good branches and since D′(ψ0) is deterministic,
we complement D′(ψ0) by increasing each priority by 1 and obtain the DPA E(ψ0) =
(W,Σ, δ, v0, β) with β(v) = α′(v) + 1 for v ∈ W ; this automaton accepts exactly those
words that encode only infinite paths through pre-tableaux for ψ0 on which for each
formula that can be tracked forever, the alternation-level of the outermost fixpoint that
is unfolded infinitely often is even. Such paths are called good branches.

Definition 5.2.47 (Satisfiability games via determinization). Let ψ0 be a coalge-
braic µ-calculus formula and let E(ψ0) = (W,Σ, δ, v0, β) be the corresponding deter-
minized tracking automaton. We define the satisfiability game via determinization (for
ψ0) as a parity game G(ψ0) = (U,E, γ) by

U = W ∪ (W × code(ψ0)),
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where nodes w ∈W belong to Abélard and nodes (w, (R, σ)) ∈ V × code(ψ0) belong to
Élöıse. For Abélard-nodes w, we put

E(w) ={(w, code(R, σ)) | (R, σ) ∈ R(l(w))}

and for Élöıse-nodes (w, code(R, σ)) with R = (Γ0/Γ1, . . . , Γl), we put

E(w, code(R, σ)) = {w′ | δ(w, (R, σ, j)) = {w′} where 0 ≤ j ≤ l}.

For Élöıse-moves t = ((w, code(R, σ)), w′) ∈ E with R = (Γ0/Γ1, . . . , Γl), 0 ≤ j ≤ l
and {w′} = δ(w, (R, σ, j)), we put γ(t) = β(w, (R, σ, j), w′) and for Abélard-moves
t = (w, (w, code(R, σ))) ∈ E, we put γ(t) = 0.

Theorem 5.2.48. Player Élöıse wins v0 in G(ψ0) if and only if there is a pre-tableau
for ψ0.

Proof. Let win = [[φG(ψ0)]] denote the winning region of Élöıse in G (recalling Defini-
tion 4.3.6) and let v0 ∈ win. For each Abélard-node v ∈ win, there is some m such that v
has nested time-outs m w.r.t. G(ψ0), which means that for each Abélard-move, i.e. for each
rule application (R, σ) ∈ R(l(v)), there is an Élöıse-move that chooses a number j such that
δ(v, code(R, σ, j)) = {w} where w ∈ win and w has game time-outs m′ for some m′ with
the following properties: let γ((v, code(R, σ, j)), w) = p. If p is odd, then m′(p) < m(p)
and m′ < m. If p is even, then m′(p) = m(p) and m′|p ≤ m, where m′|p denotes the first
p components of m′. We construct a timed-out tableau as follows: for each node v ∈ win
with R(l(v)) = ((R1, σ1), . . . , (Rn, σn)) and all 1 ≤ i ≤ n, we chose a node wi in a game
time-outs respecting manner, as detailed above and put L(v) = (w1, . . . , wn). This results
in a structure (win, L) where for each v ∈ win with R(l(v)) = ((R1, σ1), . . . , (Rn, σn)) we
have L(v) = (w1, . . . , wn) and for each (Ri, σi) ∈ R(l(v)), there is 1 ≤ j ≤ l such that
Γjσi ⊆ l(wi) and δ(v, code(Ri, σi, j)) = {wi}; we record the choices of conclusions by
means of a function c by putting c(v, i) = j, where i and j are as described above. Thus
(win, L) is an Élöıse-determined pre-tableau. It remains to see that the non-emptiness
region of the tableau automaton A(win, L) is the empty set, i.e. that for each pair (v, ψ)
with v ∈ win, ψ ∈ l(v), no run of A(E,L) that starts at (v, ψ) is accepting. Let (v, ψ) be
such a pair and let ρ ∈ run(A(E,L), (v, ψ), ∗ω) be such a run of the tableau automaton.
Then ρ corresponds to one way to trace ψ along one particular branch π1 ◦ ρ of the
Élöıse-determined pre-tableau (win, L); let w ∈ Σω be the word that encodes this branch.
The automaton E(ψ0) = (W,Σ, δ, v0, β) accepts any word that encodes some branch if
and only if the word does not encode a bad branch. Since L respects the game time-outs
for the priority function γ as described above and the game is built over E(ψ0), we know
that w does not encode a bad branch. Thus for any trace of ψ along the branch encoded
by w, and in particular for the trace ψ2 ◦ ρ, the outermost fixpoint to which the traced
formula evolves infinitely often is a greatest fixpoint. Hence ρ is accepting.

For the backwards direction, we have to show that if there is some timed-out tableau
(W,L) for ψ0, then v0 ∈ win. The timed-out tableau is Élöıse-determined and hence
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comes with a function c : W × N → N that is, as it turns out, a winning strategy for
Élöıse in the game: for all v ∈W with R(l(v)) = ((R1, σ1), . . . , (Rn, σn)), c(v, i) denotes
the conclusion that Élöıse chooses if Abélard chooses the rule application (Ri, σi). Since
the emptiness-region of the tableau automaton A(W,L) is the empty set, every play that
conforms to the strategy c corresponds to a good branch; thus Élöıse wins every play that
conforms to c, i.e. v0 ∈ win. �

Definition 5.2.49 (Global caching via determinization). We define the corre-
sponding instance of the generic global caching algorithm that solves the satisfiability
games from Definition 5.2.47 on-the-fly. Again we make use of the determinized tracking
automaton E(ψ0) = (W,Σ, δ, v0, β). As set of focused nodes, we take C = W , the global
caching algorithm uses propagation with idx(β) many priorities and we take δ as tracking
function, i.e. for v ∈ W and a ∈ Σ = code(ψ0), we put track(v, a, i) = δi(v, a). The
labelling function l : W → P(FL(ψ0)) assigns to each macrostate in W the according
label in the determinized tracking automaton. The initial focused node is just v0.

By Definition 5.2.21, the automaton N(ψ0) is an NPA with at most n = |ψ0| states
and at most k = ad(ψ0) priorities and can be transformed by Lemma 4.1.31 to an NBA
with blow-up linear in k. Additionally, we have the following:

Lemma 5.2.50. Let N(ψ0) be the tracking automaton for ψ0. Then we have:

1. If ψ0 is alternation-free, then N(ψ0) is an NCBA.

2. If ψ0 is linear, then N(ψ0) is a limit-linear CBA with at most |ψ0| synchronizing
states in each compartment.

3. If ψ0 is depth-1 linear, then N(ψ0) is a limit-stationary CBA.

4. If ψ0 is aconjunctive, then N(ψ0) is a limit-deterministic PA.

Proof. 1. If ψ0 is alternation-free, then ψ0 contains no dependent nesting of least and
greatest fixpoints and hence we have ad(ψ0) ≤ 1. Thus the tracking automaton has
k ≤ 1 priorities so that N(ψ0) = (V,Σ,∆,ψ0, α) is a NCBA with

α2 = F = {(ψ, a, ψ′) ∈ ∆ | al(ψ) = al(ψ′) = 1}

Thus F consists of transitions that transform deferrals to deferrals and N(ψ0) accepts
any word that encodes a sequence of rule application through which some deferral
can be tracked indefinitely.

2. If ψ0 is linear, then all conjunctions and disjunctions contain at most one fixpoint
variable so that every deferral in FL(ψ0) has exactly one deferral as a direct subformula.
As linear formulas are alternation-free, N(ψ0) is a CBA and accepting transitions
(ψ, a, ψ′) ∈ F transform deferrals to deferrals and compartments C(χ) are the sets of
deferrals for closed irreducible fixpoints χ. For all t ∈ F we have that π3(t) = ψ is a
deferral and there is at most one ψ′ such that there is a ∈ Σ such that (ψ, a, ψ′) ∈ F .
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Thus we have |π3[F |t \ IdF ]| ≤ 1, i.e. F is linear. As set of progressing letters P ,
we have the set of letters a = code(R, σ, i) ∈ Σ for which R is a modal rule. As all
modal rules remove one layer of modal operators, they leave no formula unchanged
and there is no transition (ψ, a, ψ) ∈ ∆ for any ψ. Modal literals ♥ψ then are
synchronizing states as they can be matched by some modal rule and thus have
at least one a-successor for some a ∈ P . The number of synchronizing states is
bounded by |ψ0| and by guardedness, each compartment in N(ψ0) contains at least
one modal literal, i.e. one synchronizing state. As set of choice pairs Q, we have all
pairs ((∨), σ, 1), ((∨), σ, 2)) ∈ Σ2 where σ is defined on {a, b}. Uniform words thus
contain infinitely progressing (i.e. modal) steps and for any two applications of the
disjunction rule to a principal disjunction ψ1 ∨ψ2 that occur between two consecutive
modal steps, the word chooses the same disjunct ψi for i ∈ {1, 2}. All compartments
C(χ) with χ = µX.ψ have the single entry transition (χ, (µ, σ, 1), ψ[X 7→ χ]) ∈ F
where σ(a) = ψ and as all fixpoint variables in ψ0 occur in the shape ♥X for some
♥ ∈ Λ, this transition can only be reached from within C(χ) by a modal rule that
progresses from ♥X to X. For each deferral ψ ∈ π3[F ] and each non-progressing letter
a = code(R, σ, i) that is not a choice letter, ψ is not principle in the rule application
encoded by a and we have a transition (ψ, a, ψ) ∈ F or ψ is principle in the rule
application and R ∈ {(∧), (η)} and the conclusion of the rule application contains at
least one deferral ψ′ so that we have (ψ, a, ψ′) ∈ F , as required. Hence N(ψ0) indeed
is a limit-linear CBA.

3. If ψ0 is depth-1 linear, then N(ψ0) is limit-linear by the previous item. It remains to
show that every compartment in N(ψ0) has just one synchronizing state. Since ψ0 is
depth-1 linear, the fixpoint variable occurs at modal nesting depth exactly 1 in each
closed irreducible fixpoint χ so that C(χ) = dfr(χ) contains exactly one modal literal
and N(ψ0) is limit-stationary.

4. We have to show that all compartments in N(ψ0) are deterministic. As non-
determinism can only occur at conjunctions in N(ψ0), it suffices to realize that
by aconjunctivity, for each deferral of the shape ψ1 ∧ψ2 only one of the conjuncts, say
ψ1, is a deferral that has to be tracked. Thus we put α(ψ1 ∧ ψ2, ((∧), σ, 1), ψ2) = 0
and note that this does not change the language that N(ψ0) accepts. Then N(ψ0) is
limit-deterministic.

�

We sum up the results of this section:

Corollary 5.2.51. Let ψ0 be a coalgebraic µ-calculus formula with n = |ψ0| and k =
ad(ψ0). Then we have:

1. If ψ0 is alternation-free, then the satisfiability of ψ0 can be decided by solving a Büchi
game; if ψ0 is satisfiable, then it has a model of size at most 3n. In the relational
case, the game can be solved in time 2O(n).
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2. If ψ0 is depth-1 linear, then the satisfiability of ψ0 can be decided by solving a Büchi
game; if ψ0 is satisfiable, then it has a model of size at most n · 2n. In the relational
case, the game can be solved in time 2O(n).

3. If ψ0 is linear, then the satisfiability of ψ0 can be decided by solving a Büchi game; if
ψ0 is satisfiable, then it has a model of size at most n2 · 2n. Again the game can be
solved in time 2O(n) in the relational case.

4. If ψ0 is aconjunctive, then the satisfiability of ψ0 can be decided by solving a parity
game with nk priorities; if ψ0 is satisfiable, then it has a model of size at most e(nk)!.
In the relational case, the game is of size O(nk)! and can be solved in time O((nk)!nk).

5. The satisfiability of an unrestricted coalgebraic µ-calculus formula ψ0 can be decided
by solving a parity game with nk priorities; if ψ0 is satisfiable, then it has a model of
size at most n!(nk)nk. In the relational case, this game is of size O(n!(nk)nk) and
can be solved in time O((n!(nk)nk)nk).

Proof. For the items 1. to 3., the formula ψ0 is alternation-free so that N(ψ0) is a CBA
and can be determinized by Lemma 4.1.18 to a DCBA; hence the satisfiability game
from Definition 5.2.47 is a Büchi game. By the results from Section 4.3, Büchi games
of size m can be solved in time O(m3). For the remaining cases, N(ψ0) is a PA and can
by Theorem 4.1.27 be determinized to a DPA so that the corresponding satisfiability
game is a parity game. By the results from Section 4.3, parity games of size m with p
priorities can be solved in time O(mp). A recent algorithm brings this bound down to
time quasipolynomial in p [5]. Winning strategies in all these games define timed-out
tableaux with the set of Abélard-nodes that Élöıse wins as carrier sets; models exists over
these carrier sets so that the number of Abélard-nodes in the games yields an upper bound
on model sizes. It remains to verify the stated bounds on the number of Abélard-nodes
in the respective games. The Abélard-nodes are just the states of the determinized and
complemented tracking automaton. Making use of Lemma 5.2.50, we observe:

1. If ψ0 is alternation-free, then N(ψ0) is an NCBA of size at most n. By Lemma 4.1.18,
this automaton can be determinized and complemented to a DBA of size at most 3n.

2. If ψ0 is depth-1 linear, then N(ψ0) is a limit-stationary CBA of size at most n. By
Lemma 4.1.13, this automaton can be determinized and complemented to a DBA
of size at most n · 2n. We note that the determinized DCBA is equivalent to N(ψ0)
only up to uniform and synchronizing acceptance. However, by guardedness, all
infinite branches through pre-tableaux contain infinitely many applications of modal
rules so that all words that encode some branch in a pre-tableau are progressing.
We also restrict our attention to uniform words since bad branches can always be
encoded by a uniform word, i.e. a word that makes uniform choices whenever a single
disjunction ψ1 ∨ψ2 is transformed twice (or more often) between any two consecutive
applications of modal rules. Similarly, we can restrict our attention – along the lines
of Definition 5.2.38 – to synchronizing words, that is, words that encode saturating
branches (i.e. branches in which modal rules are only applied to saturated nodes).
Formally, we accommodate for this restriction to uniform and synchronizing runs
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by restricting rule applications in the satisfiability games via determinization and
in pre-tableaux so that disjunctions are treated uniformly and modal rules are only
applied to saturated nodes, as described above.

3. If ψ0 is linear, then N(ψ0) is a limit-linear CBA of size at most n and with at most
n synchronizing states in each compartment. Using Lemma 4.1.13, this automaton
can be determinized and complemented to a DBA of size at most n2 · 2n. As in the
previous case, the determinized DCBA is equivalent to N(ψ0) only for uniform and
synchronizing words, which however suffices for our purposes.

4. If ψ0 is aconjunctive, then N(ψ0) is a limit-deterministic PA of size at most n and
with at most k priorities. By Theorem 4.1.23, this automaton can be determinized
and complemented to a DPA of size at most e(nk)! and with at most nk priorities.

5. If ψ0 is a full µ-calculus formula, then N(ψ0) is a PA of size at most n and with
at most k priorities. By Theorem 4.1.27, this automaton can be determinized and
complemented to a DPA of size at most n!(nk)nk and with at most nk priorities.

�

The instances of Algorithm 5.2.19 that result from Definition 5.2.49 solve these games
on-the-fly, where the propagation step in the algorithm is equivalent to solving the partial
satisfiability game by means of the fixpoint iteration algorithm as described in [4].

Corollary 5.2.52. If the employed set of one-step tableau rules is ExpTime-tractable,
then the instantiation of Algorithm 5.2.19 to satisfiability games via determinization
decides the satisfiability of formulas from the respective fragments of the coalgebraic
µ-calculus in ExpTime.

Proof. The ExpTime-tractability of the employed set of rules implies that the set of
possible moves for players Élöıse and Abélard at some given node in the automaton game
for each formula ψ0 with n = |ψ0| can be computed in time exponential in n so that
the winning regions in the game can also be computed in time exponential in n. As the
algorithm constructs the according satisfiability game for ψ and while attempting to
solve the game at most exponentially often, the algorithm runs in time exponential in n
as well. �

5.2.4 Satisfiability Games via Focusing

For alternation-free formulas that additionally are aconjunctive, smaller games – so-called
satisfiability games via focusing – can be defined by allowing Abélard to perform finitely
many additional focusing moves in each play; then it suffices to focus and then track one
formula at a time. For satisfiability games via focusing that are won by Élöıse, timed-out
tableaux can be constructed by serially focusing and finishing all least fixpoints on a
given path. This approach generalizes the previously known focusing games for CTL [31]
both to the coalgebraic level of generality and to the alternation-free and aconjunctive
fragment.
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Definition 5.2.53 (Satisfiability games via focusing). Let ψ0 be an alternation-
free and aconjunctive coalgebraic µ-calculus formula. We define the Büchi game
Gf (ψ0) = (W,E,F ) by

W = V ∪ (V × code(ψ0)),

where V = (P(FL)× (dfr(FL) ∪ {∗})), where dfr(FL) ⊆ FL denotes the set of all deferrals
from FL and where nodes (U, v) ∈ V belong to Abélard and nodes (U, v, (R, σ)) ∈
V × code(ψ0) belong to Élöıse; we use ∗ to denote a finished focus. For Abélard-nodes
(U, v), we put

E(U, v) ={(U, v, code(R, σ))) | (R, σ) ∈ R(U)}∪
{(U,w) | v = ∗, w ∈ U is a deferral}

and for Élöıse-nodes (U, v, code(R, σ)), we put

E(U, v, code(R, σ)) = {(Γjσ, tr(v, code(R, σ, j))) | R = (Γ0/Γ1, . . . , Γl), 0 ≤ j ≤ l}

where

tr(v, code(R, σ, j)) =

{
∗ if v = ∗ or Tr(v, code(R, σ, j)) ∩ dfr(FL) = ∅
w if v 6= ∗ and Tr(v, code(R, σ, j)) ∩ dfr(FL) = {w},

noting that by aconjunctivity, we always have |Tr(v, code(R, σ, j)) ∩ dfr(FL)| ≤ 1. Finally,
we put

F = {((U, v, code(R, σ)), (Γjσ,w)) ∈ E | w = ∗}.

Theorem 5.2.54. Let ψ0 be an alternation-free and aconjunctive formula, let n = |ψ0|
and let Gf (ψ0) be the satisfiability game via focusing for ψ0 as defined above. Then

|code(ψ0)| ∈ 2O(n) implies |W | ∈ 2O(n). Also Élöıse wins the node ({ψ0}, ∗) in Gf (ψ0) if
and only if there is a timed-out tableau of size at most n · 3n for ψ0.

Proof. Let Élöıse win the node ({ψ0}, ∗). Then she has a winning strategy s : V∃ → V∀.
We construct a timed-out tableau over the set

V = {(U,W, v) ∈ V ′ × (dfr(FL) ∪ {∗}) | Élöıse wins node (U ∪W, v) in Gf (ψ0) with s},

where V ′ is the set of all functions f : FL→ {0, 1, 2}, as introduced in Definition 4.1.16,
noting that |V | ≤ 3n · n, as required. We have ({ψ0}, ∅, ∗) ∈ V . We apply the strategy
s to the game Gf (ψ0) and obtain an Élöıse-determined tableau where additionally to
selecting rule applications, Abélard has refocusing moves at any node with empty focus
∗. Since s is a winning strategy, all paths in this pre-tableau eventually contain an
Élöıse-move ((U, v, code(R, σ)), (Γjσ,w)) where Tr(v, code(R, σ, j)) ∩ dfr(FL) = ∅, i.e.
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the deferral v is finished. We construct a structure over V by storing all deferrals
in a given macrostate in a set of tracked formulas and then serially finish individual
deferrals from this set. By aconjunctivity, the set of tracked formulas never grows; as
individual deferrals are finished one by one, we eventually arrive at a node with the
empty set as set of tracked formulas. At this point, we retrack all deferrals in the
current macrostate and repeat the described procedure. This guarantees that every
deferral is eventually finished, i.e. that the constructed structure indeed is a timed-out
tableau. Formally, we construct an Élöıse-determined pre-tableau. For (U,W, v) ∈ V with
R(U ∪W ) = (R1, σ1), . . . , (Rn, σn) and for 1 ≤ i ≤ n, we choose a node yi as follows,
recalling that ∆ is the transition relation of the nondeterministic tracking automaton
N(ψ0): If v ∈W and v 6= ∗, then we choose yi = (∆1(U∪W, (R, σ, j)), ∆0(W, (R, σ, j)), w),
where s(U ∪W, v, (Ri, σi)) = (Γj , w), noting that if w 6= ∗, then ∆0(v, (R, σ, j)) = {w}. If
v /∈W or v = ∗ but W 6= ∅, then we choose yi = (∆0(U∪W, (R, σ, j)), ∆0(W, (R, σ, j)), w),
where s(U ∪W, v′, (Ri, σi)) = (Γj , w) and where v′ is some deferral from W . If W = ∅,
then we choose yi = (∆1(U, (R, σ, j)), ∆0(U, (R, σ, j)), ∗), where s(U, ∗, (Ri, σi)) = (Γj , ∗).
Furthermore, we put c((U,W, v), i) = j and L(U,W, v) = (y1, . . . , yn). Then (V,L)
together with the choice function c is an Élöıse-determined pre-tableau. It remains to
show that every branch in the tableau automaton A(V,L) is accepting. So let ((U,W, v), ψ)
be a state in the tableau automaton. We distinguish three cases: 1) If ψ = v, then the
deferral ψ is eventually finished on all paths through A(V,L) that start at ((U,W, v), ψ).
2) If ψ 6= v but ψ ∈ W , then we proceed by induction over m = |W |. On every path
through A(V,L) that starts at ((U,W, v), ψ), a node ((U ′,W ′, ∗), ψ′) where the deferral v
is finished is reached eventually. In the next step, some deferral from W ′ is chosen as
new focus and we have |W ′| < m. Eventually, ψ is finished or we arrive, by induction,
at the situation that ψ = v, at the latest when ψ ∈ W , v ∈ W and |W | = 1. Then we
proceed as in the first case. 3) If ψ /∈ W , then we see by the argumentation from the
second case above that every path through A(V,L) that starts at ((U,W, v), ψ) eventually
reaches a node ((U ′, ∅, v′), ψ′). If the deferral ψ has not been finished up to this point,
then we have – assuming L(U ′, ∅, v′) = (y1, . . . , yn) – that for each (Ri, σi) ∈ R(U ′, ∅, v′),
y1 = (U ′′,W ′′, ψ′′), where the deferral at hand is contained in W ′′. Proceed as in the first
or second case.

For the converse direction, let (V,L) be a timed-out tableau for ψ0. Then the choice
function c is an Élöıse-strategy that wins the node ({ψ0}, ∗) in Gf (ψ0). �

Corollary 5.2.55. Let ψ0 be an aconjunctive and alternation-free coalgebraic µ-calculus
formula with n = |ψ0|. Then the satisfiability of ψ0 can be decided by solving a Büchi
game; if ψ0 is satisfiable, then it has a model of size at most n · 3n. In the relational case,
the game can be solved in time 2O(n).

We define the instance of the generic global caching algorithm that solves the satisfia-
bility games from Definition 5.2.53 on-the-fly:
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Definition 5.2.56 (Global caching via focusing). As set of focused nodes, we take
C = V ; the global caching algorithm uses propagation with just the priorities 1 and 2.
For (U, v) ∈ V and a = code(R, σ, j) ∈ Σ, we put

track((U, v), a, 1) =

{
∅ if v = ∗
{(Γjσ, ψ) | ψ ∈ (Tr(v, a) ∩ dfr(FL)) ∪ {∗}} if v 6= ∗

track((U, v), a, 2) =

{
∅ if v 6= ∗
{(Γjσ, ψ) | ψ ∈ dfr(FL)} if v = ∗

The labelling function l : V → P(FL(ψ0)) maps (U, v) to U . The initial focused node is
just ({ψ0}, ∗).

Corollary 5.2.57. If the employed set of one-step rules is ExpTime-tractable, then in-
stantiation of Algorithm 5.2.19 to satisfiability games via focusing decides the satisfiability
problem of the alternation-free and aconjunctive coalgebraic µ-calculus in ExpTime.

We note that while the satisfiability games via focusing are asymptotically smaller
than the satisfiability games via determinization even for the linear µ-calculus, due to
the way in which deferrals are finished serially in the timed-out tableau construction, the
resulting models are asymptotically larger than the models resulting from the satisfiability
games via determinization for alternation-free formulas. To decide just the satisfiability
of aconjunctive and alternation-free formulas, satisfiability games via focusing should be
used; if concrete models for satisfiable formulas (or refutations for unsatisfiable formulas)
are also desired, then satisfiability games via determinization should be used.
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6 Conclusion

We have given a detailed discourse on the method of constructing different kinds of
satisfiability games for the coalgebraic µ-calculus with the help of tracking automata.
We have also presented novel procedures that determinize so-called limit-deterministic
and limit-linear automata on infinite words. These procedures lead to asymptotically
smaller determinized automata than the Safra/Piterman construction (that determinizes
unrestricted Büchi automata) and the Miyano/Hayashi construction (that determinizes
unrestricted Co-Büchi automata), respectively. Since the presented satisfiability games via
determinization are constructed over the carrier sets of determinized automata, the new
determinization methods lead to asymptotically smaller satisfiability games for formulas
whose tracking automata are limit-deterministic or limit-linear. We have also presented a
generic global caching algorithm that solves the introduced satisfiability games on-the-fly.
A prototypical implementation of this algorithm shows promising initial results [25,24].
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