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Why Nested Fixpoints?

I Applications of parity games:

I Model checking for the modal µ-calculus
I Satisfiability checking for the modal µ-calculus
I Synthesis for linear-time logics (e.g. LTL)

I Recent breakthrough result: solving parity games is in QP

I Winning regions of parity games are specific nested fixpoints

I Idea: Use QP parity game solving algorithm to compute general

nested fixpoints, obtain same results for more general games / logics.

Main contribution:

I Quasipolynomial algorithm for solving fixpoint equation systems.
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Motivation: Parity Games

Parity games: (V = V3∪· V2,E ⊆ V ×V ,Ω : V → [k]), [k] = {0, . . . , k}

I history-free 3-strategy: s : V3 → V such that s(v) ∈ E (v)

I 3 wins iff there is 3-strategy with which all plays are even

4 3 1

1 2 3
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Parity games: (V = V3∪· V2,E ⊆ V ×V ,Ω : V → [k]), [k] = {0, . . . , k}

I history-free 3-strategy: s : V3 → V such that s(v) ∈ E (v)

I 3 wins iff there is 3-strategy with which all plays are even

4 3 1

1 2 3

Central result: parity games are history-free determined.

Observation: Winning regions can be specified by µ-calculus formula.
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Motivation: Reducing Parity Games to Safety Games

Given: deterministic Büchi automaton A = (Q, [k], δ,F ) accepting

exactly the even priority sequences in G = (V ,E ,Ω : V → [k]).

Parity game G is equivalent to safety game G 1 A = (V × Q,E 1 δ,F ◦ π2),

(E 1 δ)(v , q) = {(w , δ(q,Ω(v)) | w ∈ E (v)}

G :

2

1

A :

q0 q1

q2

1

2

2

1

1,2

G 1 A :
2, q0 1, q0

2, q1 1, q1

1, q2
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Size of suitable automaton A?

I Immediate: |Q| ∈ O(|V | k2 )

I Calude et al., 2017: |Q| ∈ O(|V |log k), |Q| ∈ O(|V |4) if k ≤ log |V |
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Finite Lattices

Finite lattice: (L,v), L 6= ∅ finite set, v partial order on L s.t.

join
⊔

X and meet
d

X exist for all X ⊆ L.

Basis of L: BL ⊆ L s.t. l =
⊔
{b ∈ BL | b v l} for all l ∈ L.

Examples

I Powerset lattice (P(V ),⊆) for finite set V

I For finite set V and number n, (nV ,v), where

nV = {f : V → [n − 1]}, f v g iff for all v ∈ V , f (v) ≤ g(v).

Fix a finite lattice L and basis BL.
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Systems of Fixpoint Equations

Function f : Lk+1 → L is monotone if for all Ui v Vi , 0 ≤ i ≤ k ,

f (U0, . . . ,Uk) v f (V0, . . . ,Vk)

Extremal fixpoints, systems of fixpoint equations

Let f : L→ L and fi : Lk+1 → L, 0 ≤ i ≤ k be monotone functions.

LFP f =
l
{Z v U | f (Z ) v Z} GFP f =

⊔
{Z v U | Z v f (Z )}

System of fixpoint equations:

Xi =ηi fi (X0, . . . ,Xk) 0 ≤ i ≤ k , ηi ∈ {LFP,GFP}
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Semantics of Fixpoint Equation Systems

Fix equation system E of k + 1 equations Xi =ηi fi (X0, . . . ,Xk).

Semantics of fixpoint equation systems

For valuation σ : [k] ⇀ L, put [[Xi ]]
σ = ηi f σi where, for A ∈ L,

f σi (A) = fi ([[X0]]σ[A/i ], . . . , [[Xi−1]]σ[A/i ],A, σ(i + 1), . . . , σ(k))

Solution for variable Xk in E: [[Xk ]]E = [[Xk ]]ε, where dom(ε) = ∅.
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History-freeness for Equation Systems

Even k-graph: G = (W , δ ⊆W × [k]×W ) s.t. all δ-paths are even

Definition: History-free witnesses

Even k-graph (V ,S) s.t. V = BL × [k] and for all (u, j) ∈ V ,

u v fj(S0(u, j), . . . ,Sk(u, j))

where Si (u, j) =
⊔
{(w , i) | ((u, j), i , (w , i)) ∈ S}

Note: |V | ∈ O(|BL| · (k + 1))

Lemma

There is history-free witness s.t. (u, j) ∈ V if and only if u v [[Xj ]]E.
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Universal Graphs

Definition - Universal Graphs [Colcombet, Fijalkow, 2019]

Homomorphism from G = (W , δ) to G ′ = (W ′, δ′): h : W →W ′ s.t.

for all (v , p,w) ∈ δ, we have (h(v), p, h(w)) ∈ δ′.

(n, k)-universal graph S : even k-graph s.t. for all even k-graphs G with

|G | ≤ n, there is homomorphism from G to S .

Theorem [Czerwiński et al., 2019]

I There is an (n, k)-universal graph of size nlog k+O(1),

and of size O(n4) if k ≤ log n.

I Every (n, k)-universal graph has size at least nlog k
log n−1.
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Solving Equation Systems using Universal Graphs

Fix deterministic ((|BL|(k + 1), k + 1)-universal graph S = (W , δ).

Definition - Product fixpoint

Define E 1 S : P(BL × [k]×W )→ P(BL × [k]×W ) by

(E 1 S)(Z ) = {(v , p, q) ∈ BL × [k]×W | v v fp(Z q
0 , . . . ,Z

q
k )}

where

Z q
i =

⊔
{u ∈ BL | (u, i , δ(q, i)) ∈ Z}.

Y =GFP (E 1 S)(Y ) is chained product fixpoint of E and S .

Theorem

We have u v [[Xi ]]E if and only if there is q ∈W s.t. (u, i , q) ∈ [[Y ]]E1S .
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A Progress Measure Algorithm

Fix total simulation order ≤ on W , least node w.r.t. ≤: qmin

Measure: µ : BL × [k]→W ∪ {?}; define function Lift on measures:

(Lift(µ))(v , p) = min{q ∈W | v v fp(Uµ,q
0 , . . . ,Uµ,q

k )}

where min(∅) = ? and

Uµ,q
i =

⊔
{u ∈ BL | µ(u, i) ≤ δ(q, i)},

Lifting algorithm

1. Initialize µ(v , p) = qmin for all (v , p) ∈ BL × [k].

2. If Lift(µ) 6= µ, then put µ := Lift(µ) and go to 2. Otherwise go to 3.

3. Return B = {(v , p) ∈ BL × [k] | µ(v , p) 6= ?}.

Theorem

We have (v , p) ∈ B if and only if v v [[Xp]]E.
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Examples of Equation Systems

I Coalgebraic µ-calculus [Cirstea, Kupke, Pattinson 2011]

I Finite latticed µ-calculus [Bruns, Godefroid, 2004], latticed parity

games [Kupferman, Lustig, 2007]

I Games / logics with combined parity and quantitative objective:

– Energy parity games [Chatterjee, Doyen, 2012], energy µ-calculus

[Amram, Maoz, Pistiner, Ringert, 2020]

– Mean-payoff parity games; recover [Daviaud, Jurdzinski, Lazic, 2018]
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Example, Energy Parity Games

Energy parity game: (V ,E ,Ω,w), w : E → Z; player 3 wins even plays

with starting credit c if energy value always remains non-negative.

4 3 1 2

−2

−2

0
0

−1

1
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−2

−2

0
0

−1
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I History-dependent 3-strategies: s(1) = 1, s(1, 1) = 2
I [Chatterjee, Doyen, 2012]: bound on history c = |V | · k ·W

Equation system over lattice L = cV with elements g : V → {0, . . . , c}

Function fEPG : Lk+1 → L is formula of energy µ-calculus.

Theorem [Amram, Maoz, Pistiner, Ringert, 2020]

Player 3 wins v with initial credit c if and only if ([[Xk ]]fEPG)(v) = c .
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Results: Overview

Unifying progress measure algorithm leads to novel complexity results:

setting game solving model checking satisfiability checking

standard QP QP 2O(nk log n)

coalgebraic QP QP 2O(nk log n)

latticed QP QP ?

energy pseudo-QP QP in c ?

mean pay-off pseudo-QP ? ?
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Conclusion

Results:

– Quasipolynomial solving of fixpoint equations by universal graphs

– Highly general quasipolynomial progress measure algorithm for

I Energy parity games, model checking energy µ-calculus
I Latticed parity games, model checking finite latticed µ-calculi
I Coalgebraic parity games, model checking / satisfiability checking for

coalgebraic µ-calculus

Future work:

I Cover more variants of games (e.g. stochastic setting)

I Does this work for all games with finite-history strategies?
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