Permutation Games for the Weakly Aconjunctive μ -Calculus

Daniel Hausmann

Lutz Schröder

Hans-Peter Deifel

daniel.hausmann@fau.de

lutz.schroeder@fau.de

hans-peter.deifel@fau.de

Chair for Theoretical Computer Science (http://www8.cs.fau.de) Friedrich-Alexander-Universität Erlangen-Nürnberg, Germany

From Limit-deterministic Parity Automata to Deterministic Parity Automata

A parity automaton (PA) or Büchi automaton (BA) is *limit-deterministic* (LD) if every accepting run in it is deterministic from some point on.

Limit-deterministic PA to Limit-deterministic BA

Eventually guess even highest priority. E.g.:

Transforms LDPA \mathcal{A} of size n with k priorities to LDBA Büchi(\mathcal{A}) of size $\mathcal{O}(nk)$

Limit-deterministic BA to DPA

Safraless determinization, using permutations of states. E.g.:

Determinizes LDBA \mathcal{B} of size n to DPA $\mathsf{Det}(\mathcal{B})$ of size $\mathcal{O}(n!)$ with $\mathcal{O}(n)$ priorities

Theorem: If \mathcal{A} is a limit-deterministic PA of size n with k priorities, then $L(\mathcal{A}) = L(\mathsf{Det}(\mathsf{B\ddot{u}chi}(\mathcal{A})))$; the latter is of size $\mathcal{O}((nk)!)$ and has $\mathcal{O}(nk)$ priorities.

The Aconjunctive μ -Calculus, Limit-deterministic Tracking Automata, Permutation Games

The Aconjunctive μ -Caculus [Kozen, 1983]

Modal formulas with fixpoint variables and fixpoint operators; e.g. νX . μY . $((p \land \Box X) \lor (\neg p \land \Box Y))$ ("on all paths, infinitely often p"), interpreted over standard Kripke structures. Formula ϕ is aconjunctive if for all conjunctions occurring as subformula in ϕ , at most one conjunct contains an active μ -variable. ("All fixpoints have at most one trace per path")

Construct tracking automaton A_{ϕ} for ϕ , i.e. a parity automaton that tracks subformulas of ϕ through rule applications in pre-tableaux.

Example (aconjunctive formula ϕ , tracking automaton \mathcal{A}_{ϕ} and pre-tableau for ϕ)

$$\phi = \mu X. (p \wedge \nu Y. (\Diamond (Y \wedge p) \vee \Diamond X))$$

 $\phi := \mu X \cdot \psi$ $\psi := p \wedge \theta$

 $\theta := \nu Y. \chi \qquad \chi := \nu \vee \Diamond X$

 $\upsilon := \Diamond \pi \qquad \qquad \pi := Y \wedge p$

 $\sigma := [X \mapsto \phi]$ $\tau := [Y \mapsto \theta]; \sigma$

Theorem: If ϕ is aconjunctive, then the tracking automaton \mathcal{A}_{ϕ} is a limit-deterministic PA of size $\mathcal{O}(|\phi|)$ and with $\mathcal{O}(\mathsf{ad}(\phi))$ priorities.

Then determinize \mathcal{A}_{ϕ} through limit-deterministic BA with permutation method; complement resulting DPA; obtain DPA \mathcal{D}_{ϕ} that accepts exactly the good branches (in which no least fixpoint is unfolded infinitely often) in pre-tableaux for ϕ . Build permutation game \mathcal{G}_{ϕ} over carrier of \mathcal{D}_{ϕ} .

Theorem: For aconjunctive ϕ , Eloise wins \mathcal{G}_{ϕ} if and only if ϕ is satisfiable in a model of size $\mathcal{O}((nk)!)$, where $n=|\phi|$ and $k=\mathsf{ad}(\phi)$.

Implementation as part of COOL (Coalgebraic Ontology Logic Reasoner)

Solves permutation satisfiability games on-the-fly and in coalgebraic generality; https://www8.cs.fau.de/research:software:cool

 $\phi_{\text{aut}}(n) \to (\phi_{\text{ne}}(n) \leftrightarrow \bigvee_{i \text{ even }} \mu X.\nu Y.\mu Z. \ \theta_{\Diamond}(i))$

0.01 0.00110 12 14 value of n — MLSolver COOL — COOL on-the-fly — MLSolverOpt

10 8 10 12 14 16 18 20 value of n — MLSolver — COOL on-the-fly — MLSolverOpt

 $\phi_{\mathsf{game}}(n) \to (\phi_{\mathsf{win}}(n) \to \bigwedge_{i \text{ odd}} \nu X.\mu Y.\nu Z. \phi_{\mathsf{strat}}(\theta_{\heartsuit}(i)))$ where $\theta_{\heartsuit}(i) = (q_i \land \heartsuit Y) \lor \bigvee_{i < j < n} (q_j \land \heartsuit X) \lor \bigvee_{1 < j < i} (q_j \land \heartsuit Z)$ and $\phi_{\mathsf{strat}}(\psi_{\heartsuit}) = (q_e \land \psi_{\diamondsuit}) \lor (q_a \land \psi_{\square})$

early-ac(n, 4, 2)

early-ac_{gc}(n, 4, 2)