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Automata on Infinite Words Example Automata

Co-Biichi automata (CBA): From some point on, only accepting states are visited
Biichi automata (BA):
Parity automata (PA):

Some accepting state is visited infinitely often
Highest priority that is visited infinitely often is even

CBA:
CBA:

Accepting SCCs are single states
Accepting SCCs are linear
Accepting SCCs are deterministic

BA/PA:

Determinization Methods

Input: Automaton A of size n. OQutput: Equivalent deterministic automaton B.

Type of A

Method

Type of B

Size of B

limit-stationary CBA
limit-linear CBA
CBA

limit-deterministic BA or PA

BA or PA

Miyana/Hayashi

Safra/Piterman

DCBA
DCBA
DCBA
DPA
DPA

n - 2"

TL2 QN

377/

n! or (n?)!

(n!)* or ((n*)!)!

The Coalgebraic ;-Calculus

Syntax: ¢, ¥ =L [T [pA¢Y |V | X |[Qp|vX o|pX. ¢

Semantics: Use T-coalgebras as models, e.g. for T' = P (powerset), models are Kripke frames (W, R); have e.g. x

X €V fixpoint variables, O € A modal operators, e.g. A = {0,

accepts: a((ac”) + ba)*(ba)”

Fixpoint operators iterate the argument formula finitely (1X) or infinitely (v X) often, using X to iterate.

= Op & Jy € R(z).y

Input: Fixpoint formula ¢. Decide satisfiability of ¢ by solving parity game G played over determinized tracking automaton A(y).

Syntactic shape of ¢ Example formula Intuition for example formula Type of A(y) Size of G
depth-1 linear uX. PV OoX “a state satisying v is reachable” limit-stationary CBA

linear uX. YV _oOxX "1 is reachable by an even number of steps” limit-linear CBA
alternation-free vX. Yy ANOX ANLX “all paths are infinite and ¥ holds everywhere” CBA 3"
aconjunctive vX.uY. (Y ANUX) v IOY “on all paths, ¥ holds infinitely often” limit-deterministic PA

no restriction vX.uY. Y ANOX A (x VOY) " holds everywhere and is y is always reachable” PA ((n?)!)?

Implementation as part of COOL (Coalgebraic Ontology Logic Reasoner)

Solves satisfiability games on-the-fly and in coalgebraic generality; https://www8.cs.fau.de/research:software:cool
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—A— COOL —6— MLSolver —a COOL —6— MLSolver

—a— COOL on-the-fly —e— MLSolverOpt

Paut(n) = (Pne(n) <>V, qyen U XY .07, 05(1))

where  0o(i) = (¢; A OY) V \/i<j§n(Qj NOX)V \/1§j§i(Qj NOZ)

—a— COOL on-the-fly —e— MLSolverOpt
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Pgame(11) = (Pwin() = N, aa VX YV Z. Ostrar(00(1)) )

and

@strat<w@) = <QG A 77D<>> \% <Qa A ¢D>
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—A— COOL —6— MLSolver
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early-ac(n, 4,2)
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early-ac,.(n, 4, 2)
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