Satisfiability Checking for the Coalgebraic μ -Calculus

Daniel Hausmann

daniel.hausmann@fau.de

Chair for Theoretical Computer Science, Friedrich-Alexander-Universität Erlangen-Nürnberg

Automata on Infinite Words

Co-Büchi automata (CBA): From some point on, only accepting states are visited Büchi automata (BA): Some accepting state is visited infinitely often

Parity automata (PA): Highest *priority* that is visited infinitely often is even

Accepting SCCs are single states Limit-stationary CBA: Accepting SCCs are linear _imit-linear CBA: Limit-deterministic BA/PA: Accepting SCCs are deterministic

Determinization Methods

Input: Automaton A of size n. **Output:** Equivalent deterministic automaton B.

Type of A	Method	Type of B	Size of B
limit-stationary CBA	focusing method	DCBA	$n \cdot 2^n$
limit-linear CBA	adaptive focusing method	DCBA	$n^2 \cdot 2^n$
CBA	Miyana/Hayashi	DCBA	3^n
limit-deterministic BA or PA	permutation method	DPA	$n!$ or $(n^2)!$
BA or PA	Safra/Piterman	DPA	$(n!)^2$ or $((n^2)!)!$

Example Automata

accepts: $(a+b)^*b^\omega$

accepts: $(a((a+b)(a+b))^*a)^{\omega}$

accepts: $a((ac^+) + ba)^*(ba)^{\omega}$

The Coalgebraic μ -Calculus

Syntax: $\varphi, \psi := \bot \mid \top \mid \varphi \land \psi \mid \varphi \lor \psi \mid X \mid \heartsuit \varphi \mid \nu X. \varphi \mid \mu X. \varphi$ $X \in V$ fixpoint variables, $\emptyset \in \Lambda$ modal operators, e.g. $\Lambda = \{\lozenge, \square\}$

Semantics: Use T-coalgebras as models, e.g. for $T = \mathcal{P}$ (powerset), models are Kripke frames (W, R); have e.g. $x \models \Diamond \varphi \Leftrightarrow \exists y \in R(x). \ y \models \varphi$. Fixpoint operators iterate the argument formula finitely (μX) or infinitely (νX) often, using X to iterate.

Satisfiability Checking for the Coalgebraic μ -Calculus

Input: Fixpoint formula φ . Decide satisfiability of φ by solving parity game G played over determinized tracking automaton $A(\varphi)$.

Syntactic shape of	φ Example formula	Intuition for example formula	Type of $A(\varphi)$	Size of G
depth-1 linear	$\mu X. \psi \vee \Diamond X$	"a state satisying ψ is reachable"	limit-stationary CBA	$n \cdot 2^n$
linear	$\mu X. \psi \vee \Diamond \Diamond X$	" ψ is reachable by an even number of steps"	limit-linear CBA	$n^2 \cdot 2^n$
alternation-free	$\nu X. \psi \wedge \Diamond X \wedge \Box X$	"all paths are infinite and ψ holds everywhere"	CBA	3^n
aconjunctive	$\nu X.\mu Y. (\psi \wedge \Box X) \vee \Box Y$	"on all paths, ψ holds infinitely often"	limit-deterministic PA	$(n^2)!$
no restriction	$\nu X.\mu Y.\psi \wedge \Box X \wedge (\chi \vee \Diamond Y)$	" ψ holds everywhere and is χ is always reachable"	PA	$((n^2)!)^2$

Implementation as part of COOL (Coalgebraic Ontology Logic Reasoner)

Solves satisfiability games on-the-fly and in coalgebraic generality; https://www8.cs.fau.de/research:software:cool

 $\varphi_{\mathsf{aut}}(n) \to (\varphi_{\mathsf{ne}}(n) \leftrightarrow \bigvee_{i \text{ even }} \mu X. \nu Y. \mu Z. \ \theta_{\Diamond}(i))$

 $\varphi_{\mathsf{game}}(n) \to (\varphi_{\mathsf{win}}(n) \to \bigwedge_{i \text{ odd}} \nu X.\mu Y.\nu Z. \ \varphi_{\mathsf{strat}}(\theta_{\emptyset}(i)) \)$ $\text{where} \quad \theta_{\heartsuit}(i) = (q_i \land \heartsuit Y) \lor \bigvee_{i < j \leq n} (q_j \land \heartsuit X) \lor \bigvee_{1 \leq j \leq i} (q_j \land \heartsuit Z) \qquad \text{and} \qquad \varphi_{\mathsf{strat}}(\psi_{\heartsuit}) = (q_e \land \psi_{\diamondsuit}) \lor (q_a \land \psi_{\square})$

early-ac(n,4,2)

early-ac_{qc}(n, 4, 2)