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Why Nested Fixpoints?

>
>
>
2

v

Model checking for the p-calculus = solving parity games.
Satisfiability checking for the p-calculus by solving parity games.
Winning regions of parity games are nested fixpoints.

Model checking and satisfiability checking for generalized p-calculi
(graded, probabilistic, alternating-time) by nested fixpoints.

Synthesis for linear-time logics (e.g. LTL).
Computing generalized fair bisimulations.

Type checking for inductive-coinductive types.
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Why Nested Fixpoints?

» Model checking for the p-calculus = solving parity games.

» Satisfiability checking for the u-calculus by solving parity games.
» Winning regions of parity games are nested fixpoints.

» Model checking and satisfiability checking for generalized pu-calculi
(graded, probabilistic, alternating-time) by nested fixpoints.

» Synthesis for linear-time logics (e.g. LTL).

» Computing generalized fair bisimulations.

» Type checking for inductive-coinductive types.

We show:

» Nested fixpoints stabilize after quasipolynomially many iterations.
» The problem of computing nested fixpoints is in NP N co-NP.

» Zielonka's algorithm can be adapted to compute nested fixpoints.
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Fixpoints of Set-Functions

Function o : P(U)* — P(U) is if forall Uy C Vi, 1< i<k,
Q(Ul,...7Uk) - Oé(\/17..., Vk)

Extremal Fixpoints, Nested Fixpoints

Let f : P(U) — P(U) and o : P(U)X — P(U) be monotone functions.

LFPf=({ZcU|f(Z)C 2}
GFPf=|J{zcu|zcf(2)}
NFP o = nka.nk,le,l. 000 .771X1.CM(X1, 000 ,Xk),

where n; = LFP if j is odd, n; = GFP if / is even.
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Nested Fixpoints and Parity Games

Parity game (V = V5 U Vi, E C V x V,Q) with k priorities. Define:

Q ={veV| Q) =i}
SU={veVI|EWV)NnU=#D}
oU={veV|E()CU}

apc(X1, ..., X)) =(Van( | @noX)) u(Wn( | @noX))
1<i<k 1<i<k

Theorem (e.g. [Dawar,Gradel,2008],[Bruse,Falk,Lange,2014])

wing = NFP apg
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A Tool: Fixpoint Parity Games (Venema, Konig et al.)

Fixpoint Parity Game for NFP «
Parity game (V, E,Q), nodes: V = UUP(U)KUP(U) x {1,...,k}

node ‘ priority ‘ owner ‘ moves to
uelU 0 3| {UePWU)k]|uea(U)}

u 0 v {(Up)) [1<j <k}
(U.J) J v {vlveU}

where U = (U, ..., Uy) € P(U)X.

Theorem [Konig et al. 2019]
Eloise wins node v if and only if u € NFP a.

. exponential size
- still useful for showing history-freeness for nested fixpoints.
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History-freeness for Nested Fixpoints

History-free witnesses
graph S C U x {1,...,k} x Us.t. forall (u,p,u') €S,

u e a(Si(u),. .., Sk(u)),
where S;(u) = {v | (u,i,v) € S}.

Note: |S| € O(|UP)

Lemma

There is a history-free witness mentioning v if and only if u € NFP a.

Hausmann, Schroder — Computing Nested Fixpoints in Quasipolynomial Time 5



Containment in NP N co-NP

Theorem

If a(Xy,...,Xk) can, for all Xi,..
time, the problem of computing NFP «v is in NP N co-NP.

., Xp, be computed in polynomial

Proof: Each State is contained in NFP or in dual nested fixpoint, hence
containment in NP suffices. Guess polynomial-sized history-free witness
for Eloise winning exponential-sized game. Verify witness in polynomial
time: check that all paths are even and verify compatibility with a.
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Parity Games in Quasipolynomial Time [Calude et al.,2017]

Idea: Annotate nodes with (“statistics”)
6:(Oﬂogn]+17--~700) 1<0 <k
Define 00/ = (0[joq 1415 - - - » 0) as follows:

» | even: pick greatest j s.t. i > o; > 0. If no such j exists, then j = *.
» |/ odd: pick greatest j s.t.
a) i>o0;>0o0r
b) o; even for all j/ < j, 0j odd (and if 0; > 0, i < o).
» If j = %, then 0@/ = ©. Otherwise, oj’-, = oy for j' > j, ojf =/ and
o}, =0 for j' <.

Move from (v, 0) to (w,00@Q(w)) if move from v to w exists in original
game. Solve of quasipolynomial size n - k'8 "1+2,
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Quasipolynomial Approximation

Use Calude et al.’s quasipolynomial histories to compute nested fixpoint:

Put hi = {(Ofiogn]+1.---»00) | 1 < o; < k} having |hi| < k!1°€71+2 and
define v : P(U x hi) — P(U x hi) by

YY) ={(v,0) € (Uxhi) | vea(Y,. . Yo%)
where

- 0 leftmost digit in @ is not 0
{ue U] (u,@)e Y} otherwise.

Main Theorem:
Let o : P(U)¥ — P(U) be monotone. Then NFP a = 71 [GFP 4].
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Zielonka’s Algorithm for Solving Parity Games

Define

AttrES(G, F) = uX.G N (F U aps(X, ..., X))
AttrfC(G, F) = uX.G N (F Uapg(X,..., X))

Algorithm: Solve parity game (G, E, Q) [Zielonka]

1: procedure SOLVES(G, /) > i even
2: Ni:={veG|QVv)=i} > maximal priority nodes
3: = G\ Attr5¢(G, \)); > exclude Eloise-attractor of N;
4: Wy :=SOLVEy(H,i —1); > solve smaller game
5: G := G\ AttrfS(G, We); > remove Abelard-attractor of Wy
6: if Wy # 0 then GOTO 2:

7t else RETURN G.
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Zielonka’s Algorithm for Computing Nested Fixpoints

Define
(G, F)=uX.GN(FUa(X,...,X))
(G,F)=uX.GNn(Fua(X,...,X))
Algorithm:
1: procedure SOLVE3(G, i) > i even
2: Ni:={veG|QVv)=i} > maximal priority nodes
3: H:=G\ (G, N); > exclude Eloise-attractor of N;
4: Wy :=SOLVEy(H, i —1); >
5 G:=G\ (G, Wy); > remove Abelard-attractor of Wy
6 if Wy # 0 then GOTO 2:
7 else RETURN G.
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The Fixpoint Law behind Zielonka’s Algorithm

NFP « as a system of equations:

Xi =Lrp Xi—1 i>1,i odd
X,' =GFP X,'_l | even
X1 =crp (X1, ..., Xk)

A second system of equations:

Y; =ep (s () Ua(Y,..., Y) U Yie1) N (Q<() U Yig1)
Yi =arp (2<() N (Y, ..., Yi) N Yii1) U(Qs (1) N Vi)

Theorem:
X = Y.

Hausmann, Schréder — Computing Nested Fixpoints in Quasipolynomial Time

i odd

i even

11



The Coalgebraic j-Calculus [Cirstea et al., 2011]

Set V of fixpoint variables, set A of modalities, closed under duals.

Syntax:
O, =T | L|dAY ]| oV | X | VY| uXb|vXa Qe XeV

Set-endofunctor T, predicate /ift‘ingJL for © € A: natural transformation
[€]: @ — Qo T
E.g. for T =P,

[®1(A) = {B e P(C) | BN A # 0}
[O1(A) = {B € P(C) | B C A}

H[Pattinson, 2007]
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The Coalgebraic p-Calculus [Cirstea et al., 2011]

Assume monotonicity of predicate liftings (A C B = [Q]A C [V]B)

Semantics:

Models: T-coalgebras (C,& : C — TC), extension of formulas:

[X]s = o(X) [O¢]s = €IV ]0]
[uX.¢]s = LFP([41X) [vX. ¥l = GFP([¥]Y)

where o : V — P(C), where [/]X(A) = [¢],x.s4 for A C C and where
(o[X = ADN(X) = A, (a[X = AN(Y)=0a(Y) for X £ Y.
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Instances of the Coalgebraic y-Calculus

» T = P: transition systems (C,¢: C — P(C))
— modalities: <¢,0
— standard p-calculus, e.g. puX. vV OX
» T = B (bag functor): graded transition systems (C,¢: C — B(C))
— modalities: (g), [g], g € N
— graded p-calculus®, e.g. pX. ¥V (1)X
» T = G: concurrent game frames
— Set N of agents, modalities [D],(D), D C N
— alternating-time p-calculus®, e.g. vX. ¥ A [D]X
» T = D: Markov chains
— modalities (p),[p], p € QN [0, 1]
— (two-valued) probabilistic p-calculus, e.g. vX. ¥ A (0.5)X

2[Kupferman et al.,2002]
3[Alur et al., 2002]
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Recent Results on the Coalgebraic ;-Calculus

» Reduce [H,Schroder, CONCUR 2019] and
[H,Schrdder,FoSSaCS 2019] for the
coalgebraic p-calculus to computing nested fixpoints.

Corollary
Model checking for coalgebraic p-calculi is in QP and in NPNCo-NP.

Corollary

Satisfiability checking for coalgebraic u-calculi can be done in time
O(27k1°e ) (down from (’)(2"2"2 log n)).
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Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:
T-coalgebra (C,£: C — TC) with mappings Q: C - N, m: C — A.

Eloise node ¢ € C if there is graph (D, R) on C s.t.

for all d € D, &(d) € [m(d)]R(d).
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Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:
T-coalgebra (C,£: C — TC) with mappings Q: C - N, m: C — A.

Eloise node ¢ € C if there is graph (D, R) on C s.t.

for all d € D, &(d) € [m(d)]R(d).

e.g.

— T = P: parity game for T is graph (C,¢ : C — P(C)) with priority
map Q and node ownership map m: C — {<, 0O}
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Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:
T-coalgebra (C,£: C — TC) with mappings Q: C - N, m: C — A.

Eloise node ¢ € C if there is graph (D, R) on C s.t.

for all d € D, &(d) € [m(d)]R(d).

e.g.
— T = P: parity game for T is graph (C,¢ : C — P(C)) with priority
map Q and node ownership map m: C — {<, 0O}
— T = D: parity game for T is Markov chain (C,{ : C — D(C)) with
priority map Q and map m: C — {(p),[p] | p€ QN [0,1]} .
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Coalgebraic Parity Games, examples

b 1 2 1 0.2
o
(0) (0.5)

T = P: standard T = B: graded T = D: probabilistic
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Coalgebraic Parity Games, examples, strategies

b 1 2 1 0.2
<&
(0) (0.5)

T = P: standard T = B: graded T = D: probabilistic
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Solving Coalgebraic Parity Games

Winning regions in coalgebraic parity games are nested fixpoints:

Given game (C, &, m, Q), define f : P(C)k — P(C) by

f(Xoy.. s Xe) ={v | 3,9 e A.m(v) =0, Q(v) =i and &(v) € [O]X;}
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Solving Coalgebraic Parity Games

Winning regions in coalgebraic parity games are nested fixpoints:

Given game (C, &, m, Q), define f : P(C)k — P(C) by

f(Xoy.. s Xe) ={v | 3,9 e A.m(v) =0, Q(v) =i and &(v) € [O]X;}

Theorem [H,Schrder, CONCUR 2019]:
Player Eloise wins u in coalgebraic parity game if and only if u € NFP f.

Coalgebraic p-calculus model checking = solving coalgebraic parity games.
Enables on-the-fly model checking: Start with initial node, expand nodes
step by step, compute NFP f at any point (solving a partial game).
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Conclusion

Results:

— Computing nested fixpoints by
e (fixpoint iteration),
e Calude et al.'s quasipolynomial algorithm
e Zielonka's algorithm

— Computing nested fixpoints also is in NPNCo-NP.

— Reduction of satisfiability checking and model checking for the
coalgebraic pi-calculus to computing nested fixpoints.

Computing as nested fixpoints.

for inductive-coinductive types by computing nested
fixpoints.
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