Computing Nested Fixpoints in Quasipolynomial Time

Daniel Hausmann and Lutz Schröder

LaBRI - October 22 2019

Chair for Theoretical Computer Science Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Why Nested Fixpoints?

- ▶ Model checking for the μ -calculus = solving parity games.
- ▶ Satisfiability checking for the μ -calculus by solving parity games.
- ► Winning regions of parity games are nested fixpoints.
- Model checking and satisfiability checking for generalized μ-calculi (graded, probabilistic, alternating-time) by nested fixpoints.
- ► Synthesis for linear-time logics (e.g. LTL).
- ► Computing generalized fair bisimulations.
- ► Type checking for inductive-coinductive types.

Why Nested Fixpoints?

- ▶ Model checking for the μ -calculus = solving parity games.
- ▶ Satisfiability checking for the μ -calculus by solving parity games.
- ► Winning regions of parity games are nested fixpoints.
- Model checking and satisfiability checking for generalized μ-calculi (graded, probabilistic, alternating-time) by nested fixpoints.
- ► Synthesis for linear-time logics (e.g. LTL).
- ► Computing generalized fair bisimulations.
- ► Type checking for inductive-coinductive types.

We show:

- ► Nested fixpoints stabilize after quasipolynomially many iterations.
- ▶ The problem of computing nested fixpoints is in $NP \cap CO-NP$.
- ► Zielonka's algorithm can be adapted to compute nested fixpoints.

Fixpoints of Set-Functions

Function $\alpha: \mathcal{P}(U)^k \to \mathcal{P}(U)$ is monotone if for all $U_i \subseteq V_i$, $1 \leq i \leq k$, $\alpha(U_1, \dots, U_k) \subseteq \alpha(V_1, \dots, V_k)$

Extremal Fixpoints, Nested Fixpoints

Let $f: \mathcal{P}(U) \to \mathcal{P}(U)$ and $\alpha: \mathcal{P}(U)^k \to \mathcal{P}(U)$ be monotone functions.

$$\mathsf{LFP}\,f = \bigcap \{Z \subseteq U \mid f(Z) \subseteq Z\}$$

$$\mathsf{GFP}\,f = \bigcup \{ Z \subseteq U \mid Z \subseteq f(Z) \}$$

$$\mathsf{NFP}\,\alpha = \eta_k X_k.\eta_{k-1} X_{k-1}.\ldots.\eta_1 X_1.\alpha(X_1,\ldots,X_k),$$

where $\eta_i = \mathsf{LFP}$ if i is odd, $\eta_i = \mathsf{GFP}$ if i is even.

Nested Fixpoints and Parity Games

Parity game $(V = V_{\exists} \cup V_{\forall}, E \subseteq V \times V, \Omega)$ with k priorities. Define:

$$\Omega_{i} = \{ v \in V \mid \Omega(v) = i \}$$

$$\Diamond U = \{ v \in V \mid E(v) \cap U \neq \emptyset \}$$

$$\Box U = \{ v \in V \mid E(v) \subseteq U \}$$

$$\alpha_{\mathsf{PG}}(X_1,\ldots,X_k) = (V_{\exists} \cap (\bigcup_{1 \leq i \leq k} \Omega_i \cap \Diamond X_i)) \cup (V_{\forall} \cap (\bigcup_{1 \leq i \leq k} \Omega_i \cap \Box X_i))$$

Theorem (e.g. [Dawar, Grädel, 2008], [Bruse, Falk, Lange, 2014])

$$\mathsf{win}_\exists = \mathsf{NFP}\,\alpha_\mathsf{PG}$$

A Tool: Fixpoint Parity Games (Venema, König et al.)

Fixpoint Parity Game for NFP α

Parity game (V, E, Ω) , nodes: $V = U \cup \mathcal{P}(U)^k \cup \mathcal{P}(U) \times \{1, \dots, k\}$

node	priority	owner	moves to
$u \in U$	0	3	$\{\mathbf{U}\in\mathcal{P}(U)^k\mid u\in\alpha(\mathbf{U})\}$
U	0	\forall	$\{(U_j,j)\mid 1\leq j\leq k\}$
(U,j)	j	\forall	$\{v\mid v\in U\}$

where
$$\mathbf{U} = (U_1, \dots, U_k) \in \mathcal{P}(U)^k$$
.

Theorem [König et al. 2019]

Eloise wins node u if and only if $u \in NFP \alpha$.

Problem: exponential size

- still useful for showing history-freeness for nested fixpoints.

History-freeness for Nested Fixpoints

History-free witnesses

Even graph $S \subseteq U \times \{1, \dots, k\} \times U$ s.t. for all $(u, p, u') \in S$,

$$u \in \alpha(S_1(u), \ldots, S_k(u)),$$

where
$$S_i(u) = \{v \mid (u, i, v) \in S\}.$$

Note: $|S| \in \mathcal{O}(|U|^2)$

Lemma

There is a history-free witness mentioning u if and only if $u \in NFP \alpha$.

Containment in NP ∩ co-NP

Theorem

If $\alpha(X_1, \ldots, X_k)$ can, for all X_1, \ldots, X_n , be computed in polynomial time, the problem of computing NFP α is in NP \cap co-NP.

Proof: Each State is contained in NFP or in dual nested fixpoint, hence containment in NP suffices. Guess *polynomial*-sized history-free witness for Eloise winning exponential-sized game. Verify witness in polynomial time: check that all paths are even and verify compatibility with α .

Parity Games in Quasipolynomial Time [Calude et al.,2017]

Idea: Annotate nodes with quasipolynomial histories ("statistics")

$$\overline{o} = (o_{\lceil \log n \rceil + 1}, \dots, o_0)$$
 $1 \le o_i \le k$

Define $\overline{o}@i = (o'_{\lceil \log n \rceil + 1}, \dots, o'_0)$ as follows:

- ▶ *i* even: pick greatest *j* s.t. $i > o_j > 0$. If no such *j* exists, then j = *.
- ► *i* odd: pick greatest *j* s.t.
 - **a)** $i > o_i > 0$ or
 - **b)** o_j even for all j' < j, $o_{j'}$ odd (and if $o_j > 0$, $i < o_j$).
- ▶ If j = *, then $\overline{o}@i = \overline{o}$. Otherwise, $o'_{j'} = o_{j'}$ for j' > j, $o'_j = i$ and $o'_{j'} = 0$ for j' < j.

Move from (v, \overline{o}) to $(w, \overline{o}@\Omega(w))$ if move from v to w exists in original game. Solve safety game of quasipolynomial size $n \cdot k^{\lceil \log n \rceil + 2}$.

Quasipolynomial Approximation

Use Calude et al.'s quasipolynomial histories to compute nested fixpoint:

Put
$$hi = \{(o_{\lceil \log n \rceil + 1}, \dots, o_0) \mid 1 \le o_i \le k\}$$
 having $|hi| \le k^{\lceil \log n \rceil + 2}$ and define $\gamma : \mathcal{P}(U \times hi) \to \mathcal{P}(U \times hi)$ by

$$\gamma(Y) = \{(v, \overline{o}) \in (U \times hi) \mid v \in \alpha(Y^{\overline{o}@1}, \dots, Y^{\overline{o}@k})\}$$

where

$$Y^{\overline{o}'} = \begin{cases} \emptyset & \text{leftmost digit in } \overline{o}' \text{ is not } 0 \\ \{u \in U \mid (u, \overline{o}') \in Y\} & \text{otherwise.} \end{cases}$$

Main Theorem:

Let $\alpha : \mathcal{P}(U)^k \to \mathcal{P}(U)$ be monotone. Then NFP $\alpha = \pi_1[\mathsf{GFP}\,\gamma]$.

Zielonka's Algorithm for Solving Parity Games

Define

$$Attr_{\exists}^{PG}(G, F) = \mu X.G \cap (F \cup \alpha_{PG}(X, \dots, X))$$
$$Attr_{\forall}^{PG}(G, F) = \mu X.G \cap (F \cup \overline{\alpha_{PG}}(X, \dots, X))$$

Algorithm: Solve parity game (G, E, Ω) [Zielonka]

```
1: procedure SOLVE_{\exists}(G,i) \triangleright i even

2: N_i := \{v \in G \mid \Omega(v) = i\}; \triangleright maximal priority nodes

3: H := G \setminus \operatorname{Attr}_{\exists}^{\operatorname{PG}}(G,N_i); \triangleright exclude Eloise-attractor of N_i

4: W_{\forall} := \operatorname{SOLVE}_{\forall}(H,i-1); \triangleright solve smaller game

5: G := G \setminus \operatorname{Attr}_{\forall}^{\operatorname{PG}}(G,W_{\forall}); \triangleright remove Abelard-attractor of W_{\forall}

6: if W_{\forall} \neq \emptyset then GOTO 2:

7: else RETURN G.
```

Zielonka's Algorithm for Computing Nested Fixpoints

Define

$$Attr_{\exists}(G, F) = \mu X.G \cap (F \cup \alpha(X, \dots, X))$$
$$Attr_{\forall}(G, F) = \mu X.G \cap (F \cup \overline{\alpha}(X, \dots, X))$$

```
Algorithm: Compute NFP \alpha
1: procedure SOLVE_{\exists}(G, i)
                                                                                    \triangleright i even
        N_i := \{ v \in G \mid \Omega(v) = i \};
2:
                                                              H := G \setminus \operatorname{Attr}_{\exists}(G, N_i);
3.
                                                     \triangleright exclude Eloise-attractor of N_i
4: W_{\forall} := \text{SOLVE}_{\forall}(H, i-1):
                                                          compute smaller fixpoint
5: G := G \setminus Attr_{\forall}(G, W_{\forall});
                                                 \triangleright remove Abelard-attractor of W_{\forall}
        if W_{\forall} \neq \emptyset then GOTO 2:
6.
        else RETURN G.
7:
```

The Fixpoint Law behind Zielonka's Algorithm

NFP α as a system of equations:

$$X_i =_{\mathsf{LFP}} X_{i-1}$$
 $i > 1, i \text{ odd}$ $X_i =_{\mathsf{GFP}} X_{i-1}$ $i \text{ even}$ $X_1 =_{\mathsf{GFP}} \alpha(X_1, \dots, X_k)$

A second system of equations:

$$\begin{split} Y_i =_{\mathsf{LFP}} & \left(\Omega_{>}(i) \cup \alpha(Y_i, \dots, Y_i) \cup Y_{i-1}\right) \cap \left(\Omega_{\leq}(i) \cup Y_{i+1}\right) & i \text{ odd} \\ Y_i =_{\mathsf{GFP}} & \left(\Omega_{\leq}(i) \cap \alpha(Y_i, \dots, Y_i) \cap Y_{i-1}\right) \cup \left(\Omega_{>}(i) \cap Y_{i+1}\right) & i \text{ even} \end{split}$$

Theorem:

$$X_k = Y_k$$
.

The Coalgebraic μ -Calculus [Cîrstea et al., 2011]

Set V of fixpoint variables, set Λ of modalities, closed under duals.

Syntax:

$$\phi, \psi := \top \mid \bot \mid \phi \wedge \psi \mid \phi \vee \psi \mid X \mid {\stackrel{\bigtriangledown}{\vee}} \psi \mid \mu X.\psi \mid \nu X.\psi \qquad \heartsuit \in \Lambda, X \in \mathbf{V}$$

Set-endofunctor T, predicate lifting¹ for $\heartsuit \in \Lambda$: natural transformation

$$\llbracket \heartsuit \rrbracket : \mathcal{Q} \to \mathcal{Q} \circ \mathit{T^{op}}$$

E.g. for $T = \mathcal{P}$,

$$[\![\diamondsuit]\!](A) = \{ B \in \mathcal{P}(C) \mid B \cap A \neq \emptyset \}$$
$$[\![\square]\!](A) = \{ B \in \mathcal{P}(C) \mid B \subseteq A \}$$

¹[Pattinson, 2007]

The Coalgebraic μ -Calculus [Cîrstea et al., 2011]

Assume monotonicity of predicate liftings $(A \subseteq B \Rightarrow \llbracket \heartsuit \rrbracket A \subseteq \llbracket \heartsuit \rrbracket B)$

Semantics:

Models: T-coalgebras $(C, \xi : C \rightarrow TC)$, extension of formulas:

where $\sigma: \mathbf{V} \to \mathcal{P}(C)$, where $\llbracket \psi \rrbracket_{\sigma}^{X}(A) = \llbracket \psi \rrbracket_{\sigma[X \mapsto A]}$ for $A \subseteq C$ and where $(\sigma[X \mapsto A])(X) = A$, $(\sigma[X \mapsto A])(Y) = \sigma(Y)$ for $X \neq Y$.

Instances of the Coalgebraic μ -Calculus

- ▶ $T = \mathcal{P}$: transition systems $(C, \xi : C \to \mathcal{P}(C))$
 - modalities: ♦,□
 - standard μ -calculus, e.g. μX . $\psi \lor \diamondsuit X$
- ▶ $T = \mathcal{B}$ (bag functor): graded transition systems $(C, \xi : C \to \mathcal{B}(C))$
 - modalities: $\langle g \rangle$, [g], $g \in \mathbb{N}$
 - graded μ -calculus², e.g. μX . $\psi \vee \langle 1 \rangle X$
- $ightharpoonup T = \mathcal{G}$: concurrent game frames
 - Set N of agents, modalities [D], $\langle D \rangle$, $D \subseteq N$
 - alternating-time μ -calculus³, e.g. $\nu X. \psi \wedge [D]X$
- $ightharpoonup T = \mathcal{D}$: Markov chains
 - modalities $\langle p \rangle$,[p], $p \in \mathbb{Q} \cap [0,1]$
 - (two-valued) probabilistic μ -calculus, e.g. νX . $\psi \wedge \langle 0.5 \rangle X$

²[Kupferman et al.,2002]

³[Alur et al., 2002]

Recent Results on the Coalgebraic μ -Calculus

Reduce model checking [H,Schröder,CONCUR 2019] and satisfiability checking [H,Schröder,FoSSaCS 2019] for the coalgebraic μ-calculus to computing nested fixpoints.

Corollary

Model checking for coalgebraic μ -calculi is in QP and in $NP \cap Co-NP$.

Corollary

Satisfiability checking for coalgebraic μ -calculi can be done in time $\mathcal{O}(2^{nk\log n})$ (down from $\mathcal{O}(2^{n^2k^2\log n})$).

Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:

T-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$.

Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t.

for all
$$d \in D$$
, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:

T-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$.

Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t.

for all
$$d \in D$$
, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

e.g.

- $T = \mathcal{P}$: parity game for T is graph $(C, \xi : C \to \mathcal{P}(C))$ with priority map Ω and node ownership map $m : C \to \{\diamondsuit, □\}$.

Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:

T-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$.

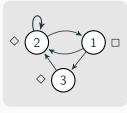
Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t.

for all
$$d \in D$$
, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

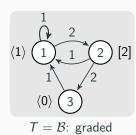
e.g.

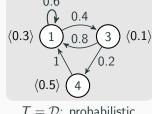
- $T = \mathcal{P}$: parity game for T is graph $(C, \xi : C \to \mathcal{P}(C))$ with priority map Ω and node ownership map $m : C \to \{\diamondsuit, □\}$.
- $T=\mathcal{D}$: parity game for T is Markov chain $(C,\xi:C\to\mathcal{D}(C))$ with priority map Ω and map $m:C\to\{\langle p\rangle,[p]\mid p\in\mathbb{Q}\cap[0,1]\}$.

Coalgebraic Parity Games, examples



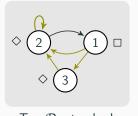
 $T = \mathcal{P}$: standard



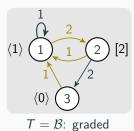


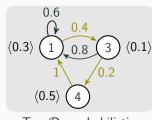
 $T = \mathcal{D}$: probabilistic

Coalgebraic Parity Games, examples, strategies



 $T = \mathcal{P}$: standard





 $T = \mathcal{D}$: probabilistic

Solving Coalgebraic Parity Games

Winning regions in coalgebraic parity games are nested fixpoints:

Given game (C, ξ, m, Ω) , define $f : \mathcal{P}(C)^k \to \mathcal{P}(C)$ by

$$f(X_0,\ldots,X_k)=\{v\mid \exists i, \circlearrowleft\in\Lambda.\ m(v)=\circlearrowleft,\Omega(v)=i\ \text{and}\ \xi(v)\in\llbracket\circlearrowleft\rrbracket X_i\}$$

Solving Coalgebraic Parity Games

Winning regions in coalgebraic parity games are nested fixpoints:

Given game (C, ξ, m, Ω) , define $f : \mathcal{P}(C)^k \to \mathcal{P}(C)$ by

$$f(X_0,\ldots,X_k)=\{v\mid \exists i, \circlearrowleft\in \Lambda.\ m(v)=\circlearrowleft, \Omega(v)=i \text{ and } \xi(v)\in \llbracket\circlearrowleft\rrbracket X_i\}$$

Theorem [H,Schröder,CONCUR 2019]:

Player Eloise wins u in coalgebraic parity game if and only if $u \in NFP f$.

Coalgebraic μ -calculus model checking = solving coalgebraic parity games. Enables on-the-fly model checking: Start with initial node, expand nodes step by step, compute NFP f at any point (solving a partial game).

Conclusion

Results:

- Computing nested fixpoints by
 - (fixpoint iteration),
 - Calude et al.'s quasipolynomial algorithm
 - Zielonka's algorithm
- Computing nested fixpoints also is in NP∩Co-NP.
- Reduction of satisfiability checking and model checking for the coalgebraic μ -calculus to computing nested fixpoints.

Future work:

- Computing fair bisimulations as nested fixpoints.
- Type checking for inductive-coinductive types by computing nested fixpoints.

References i

R. Alur, T. Henzinger, and O. Kupferman.

Alternating-time temporal logic.

J. ACM, 49:672-713. 2002.

F. Bruse, M. Falk, and M. Lange.

The fixpoint-iteration algorithm for parity games.

In Games, Automata, Logics and Formal Verification, GandALF 2014, volume 161 of EPTCS, pages 116-130, 2014.

C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan.

Deciding parity games in quasipolynomial time.

In Theory of Computing, STOC 2017, pages 252–263. ACM, 2017.

References ii

C. Cîrstea, C. Kupke, and D. Pattinson.

EXPTIME tableaux for the coalgebraic μ -calculus.

Log. Meth. Comput. Sci., 7, 2011.

A. Dawar and E. Grädel.

The descriptive complexity of parity games.

In *Computer Science Logic, CSL 2008*, volume 5213 of *LNCS*, pages 354–368. Springer, 2008.

D. Pattinson.

Expressivity Results in the Modal Logic of Coalgebras.

PhD thesis, Universität München, 2001.