Overview	
Complexities of satisfiability checking for some	e basic n
 K / ALC K + global axioms (universal modality) modal μ-calculus 	PSPA EXP EXP
 monotone modal logic monotone modal logic + global axioms alternation-free monotone μ-calculus + global axioms 	NP [NP [NP [

The Monotone μ -Calculus

Fix sets At, Act, Var of *atoms*, *actions* and *fixpoint variables*. Syntax:

$$\begin{array}{l} \phi, \psi ::= \bot \mid \top \mid p \mid \phi \land \psi \mid \phi \lor \psi \mid [a]\phi \mid \langle a \rangle \phi \mid X \mid \nu X.\phi \mid \mu X.\phi \\ (p \in \mathsf{At}, \ a \in \mathsf{Act}, \ X \in \mathsf{Var}) \end{array}$$

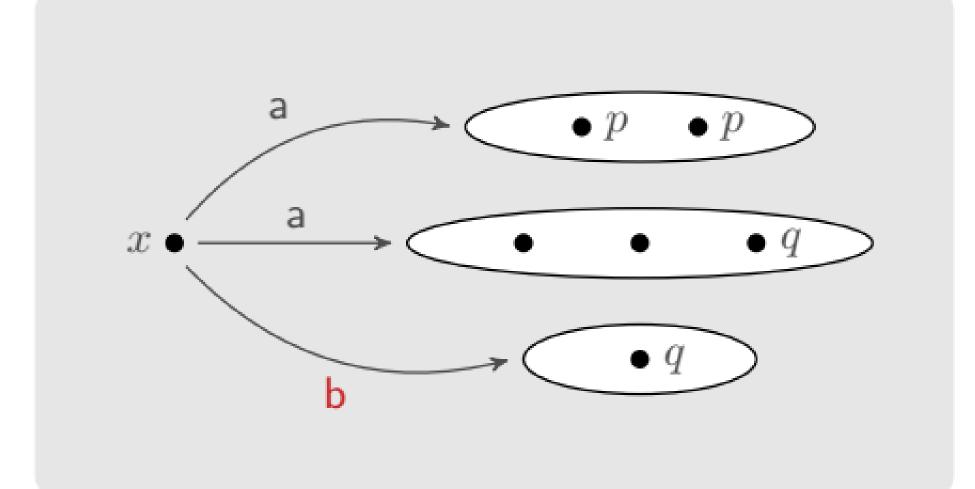
Seman

Formulae are interpreted over *neighbourhood structures* M = (W, N, I) with $N: \operatorname{Act} \times W \to \mathcal{P}(\mathcal{P}(W)), I: \operatorname{At} \to \mathcal{P}(W), \text{ valuation } \sigma: \operatorname{Var} \to \mathcal{P}(W):$

$$\begin{bmatrix} [a]\phi \end{bmatrix}_{\sigma} = \{w \in W \mid \forall S \in N(a, w). S \cap \begin{bmatrix} [a]\phi \end{bmatrix}_{\sigma} = \{w \in W \mid \exists S \in N(a, w). S \subseteq \\ \llbracket \langle a \rangle \phi \rrbracket_{\sigma} = \{w \in W \mid \exists S \in N(a, w). S \subseteq \\ \llbracket \mu X. \phi \rrbracket_{\sigma} = \bigcap \{Z \subseteq W \mid \exists \phi \rrbracket_{\sigma}^{X}(Z) \subseteq Z \} \\ \llbracket \nu X. \phi \rrbracket_{\sigma} = \bigcup \{Z \subseteq W \mid Z \subseteq \llbracket \phi \rrbracket_{\sigma}^{X}(Z) \} \\ = \sigma(X) \text{ and } \llbracket \phi \rrbracket_{\sigma}^{X}(Z) = \llbracket \phi \rrbracket_{\sigma} \text{ for } Z \subseteq \begin{bmatrix} e \\ e \\ e \\ e \\ e \\ e \end{bmatrix}_{\sigma}$$

where $\llbracket X \rrbracket_{\sigma} = \sigma(X)$ and $\llbracket \phi \rrbracket_{\sigma}^{X}(Z) = \llbracket \phi \rrbracket_{\sigma[X \mapsto Z]}$ for $Z \subseteq W$. subformulae of ϕ with fixpoints unfolded at most once Closure $cl(\phi)$ of ϕ : Deferrals dfr \subseteq cl(ϕ): formulae originating from least fixpoints

Example of a neighbourhood structure and some (un)satisfied formulae:



Cannot express e.g. "p holds in every successor state" "p holds in at least one successor state"

NP Reasoning in the Monotone μ -Calculus

Daniel Hausmann and Lutz Schröder

University Erlangen-Nuremberg, Germany

Tableaux

modal logics: ACE PTIME TIME Vardi, 1989] nere nere

 $\llbracket \phi \rrbracket_{\sigma} \neq \emptyset \}$ $\llbracket \phi \rrbracket_{\sigma} \}$

 $x \in \llbracket \langle a \rangle p \rrbracket$

 $x \in \llbracket [a](p \lor q) \rrbracket$

 $x \notin \llbracket \langle b \rangle p \rrbracket$

Pre-tableaux are graphs who	se
formulae, transitions accordin	g t
(\perp) $\frac{\Gamma, \perp}{}$	
$(\wedge) \qquad rac{\Gamma, \phi_0 \wedge \phi_1}{\Gamma, \phi_0, \phi_1}$	
$(\langle a angle) \qquad rac{\Gamma, \langle a angle \phi_0, [a] \phi_1}{\phi_0, \phi_1}$	
where $a \in Act, p \in At, X \in Y$	Var
For alphabet Σ identifying ru	le a

$$\gamma: \mathsf{cl}(\phi) \times \Sigma \to \mathcal{P}(\mathsf{cl}(\phi))$$

track (least fixpoint) formulae along tableaux rules. Tableaux are pre-tableaux in which all δ -traces are finite.

Theorem 1

Formula ϕ is satisfiable \Leftrightarrow

Proof sketch:

Formula ϕ is satisfiable

Example Logics

Logics that embed into the monotone μ -calculus:

- ► Epistemic Logic $\langle a \rangle \phi$ – "Agent *a* knows ϕ "
- ► Concurrent PDL (CPDL), [Peleg, 1987] $\langle \alpha \rangle \phi$ – "There is execution of program α in parallel, nondeterministic system s.t. all end states satisfy ϕ "
- ► Game Logic, [Parikh, 1983] $\langle \alpha \rangle \phi$ – "Player Angel has strategy to achieve ϕ in game α "

 \rightsquigarrow The satisfiability problems of (the alternation-free fragments) of) these logics is NP-complete.

Satisfiability Games

- nodes are labelled with sets of to tableaux rules:
 - $\Gamma, p, \neg p$ $\left(\frac{1}{2}\right)$

$$(\eta) \qquad \frac{\Gamma, \eta X. \phi_0}{\Gamma, \phi_0[\eta X. \phi_0/X]}$$

ar, $\eta \in \{\mu, \nu\}$ e applications, tracking functions

- $\delta: \mathsf{dfr} \times \Sigma \to \mathcal{P}(\mathsf{dfr}),$

There is a tableau for ϕ .

states: set of saturated sets of formulae, Σ_p : propositional rules

$$U = \{ \Psi \subseteq \mathsf{cl}(\phi) \mid 2 \ge |\Psi| \}$$

Node Moves $(\Psi, \Phi) \in V_{\exists} | \{ (\gamma(\Psi, w),$ $(\Gamma, \Phi) \in V_{\forall} | \{ (\{\phi_0, \phi_1\},$ if $\Phi \neq$ if $\Phi =$

- ► Modal steps track at most two formulae
- automata determinization

There is a tableau for ϕ

Main Result

The satisfiability problem for the alternation-free monotone μ -calculus with global assumptions is NP-complete.

How about the full monotone μ -calculus / full Game Logic? (i.e., is assumption of alternation-freeness mandatory?)

Further Information

Extended version of IJCAR 2020 paper: https://arxiv.org/abs/2002.05075

25-minute talk at IJCAR 2020: Video: https://www8.cs.fau.de/ext/daniel/monotone.mp4 Slides: https://www8.cs.fau.de/ext/daniel/monotone.pdf

Two-player Büchi games with $\mathcal{O}(|\phi|^2)$ Eloise-nodes $(|V_{\exists}| \leq |\phi|^2)$:

 $V_{\exists} = U^2 \quad V_{\forall} = \mathsf{states}^2 \quad F = \{(\Psi, \emptyset) \in V_{\exists}\}$

$$\delta(\Phi, w)) \in V_{\forall} \mid w \in (\Sigma_p)^*, |w| \leq 3n \}$$

$$\Phi') \in V_{\exists} \mid \{ \langle a \rangle \phi_0, [a] \phi_1 \} \subseteq \Gamma \},$$

$$\emptyset, \text{ then } \Phi' = \delta(\Phi, (\langle a \rangle \phi_0, [a] \phi_1)),$$

$$\emptyset, \text{ then } \Phi' = \{ \phi_0, \phi_1 \} \}$$

► Propositional reasoning condensed into single **Eloise**-moves

► Implicit: economic variant of Miyano/Hayashi Co-Büchi

Theorem 2

Eloise wins satisfiability game. \Leftrightarrow

 \Leftrightarrow There is a tableau for ϕ \Leftrightarrow **Eloise** wins the satisfiability game for ϕ

Future Work