Overview

– Winning regions in parity games are nested fixpoints over powerset lattices

- Parity games can be solved in quasipolynomial time [Calude et al., 2017]

– Solutions of quantitative and probabilistic games are nested fixpoints over quantitative and probabilistic lattices, respectively

We show: Quasipolynomial methods from parity games can be used to compute nested fixpoints over arbitrary finite lattices

Nested Fixpoints over Finite Lattices

Fix finite lattice (L, \sqsubseteq) with basis B of size n = |B|, join \sqcup , meet \sqcap .

For d monotone functions $f_i: L^d \to L$, system of equations consists of d equations of the form

$$X_i =_{\eta_i} f_i(X_1, \ldots, X_d)$$

where $\eta_i \in \{\mathsf{LFP}, \mathsf{GFP}\}$.

For a partial valuation $\sigma : \{1, \ldots, d\} \rightarrow L$, inductively define $\llbracket X_i \rrbracket^{\sigma} = \eta_i X_i . f_i^{\sigma},$

where the function f_i^{σ} is given by

$$f_i^{\sigma}(A) = f_i(\operatorname{ev}(\sigma', 1), \dots, \operatorname{ev}(\sigma', i-1), A, \operatorname{ev}(\sigma', i+1))$$

for $A \in L$, where $\sigma' = \sigma[i \mapsto A]$ and

$$\mathbf{ev}(\sigma, j) = \begin{cases} \sigma(j) & j \in \operatorname{dom}(\sigma) \\ \llbracket X_j \rrbracket^{\sigma} & j \notin \operatorname{dom}(\sigma) \end{cases} \quad (\sigma[i \mapsto A])(j)$$

and where

$$\mathsf{GFP} \ g = \bigsqcup\{ V \sqsubseteq L \mid V \sqsubseteq g(V) \} \qquad \mathsf{LFP} \ g = \sqcap\{ V \sqsubseteq L \mid g(V) \sqsubseteq V \}.$$

Solution for variable X_i is $[X_i]^{\epsilon} (\mathsf{dom}(\epsilon) = \emptyset)$.

Canonical equation system for single function $f: L^d$ –

$$X_i =_{\eta_i} X_{i-1}$$
$$X_1 =_{\mathsf{LFP}} f(X_1, \dots, X_d),$$

where $\eta_i = \mathsf{LFP}$ if *i* odd, $\eta_i = \mathsf{GFP}$ if *i* even.

Nested fixpoint of $f: L^d \to L$ is solution of canonical equation system: $\mathsf{NFP}\,f := \llbracket X_d \rrbracket$

Uniform Solving for \omega-regular Games Quasipolynomial Computation of Nested Fixpoints (TACAS 2021)

Daniel Hausmann and Lutz Schröder

Gothenburg University, Sweden and University Erlangen-Nuremberg, Germany

$$(-1), \dots, \operatorname{ev}(\sigma', d)) = \begin{cases} \sigma(j) & j \neq i \\ A & j = i \end{cases}$$

$$\begin{array}{l} \rightarrow L: \\ i > 1 \end{array}$$

A Generic Progress Measure Algorithm

Fix (n, d)-universal tree $(T, \delta : T \times \{1, \ldots, d\} \to T, \leq)$, least node w.r.t. $\leq t_{min}$

Measure: $\mu: B \to T \cup \{\star\}$; define function Lift on measures by $(\mathsf{Lift}(\mu))(v) = \min\{t \in T \mid v \sqsubseteq f(U_1^{\mu,t}, \dots, U_d^{\mu,t})\}$ where $\min(\emptyset) = \star$ and

Our algorithm:

1. Initialize $\mu(v) = t_{\min}$ for all $v \in B$ 2. If $\text{Lift}(\mu) \neq \mu$, then put $\mu := \text{Lift}(\mu)$ and go to 2; else go to 3. 3. Return $\mathbb{A} = \{ v \in B \mid \mu(v) \neq \star \}$

Theorem: We have $v \in \mathbb{A}$ if and only if $v \sqsubseteq \mathsf{NFP} f$. There are (n, d)-universal trees of size quasipolynomial in n, d[Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys, 2018].

Corollary: The number of iterations required to compute nested fixpoints over L is quasipolynomial in n and d.

Examples of Nested Fixpoints

-Parity games:		
$G = (V_{\exists} \cup V_{\forall}, E, \Omega), n \text{ nodes, } d$		
One-step game function f_{PG} : (2)		
$(X_1,\ldots,X_d)\mapsto (V_\exists\cap A)$		
Theorem [Walukiewicz, 19		
Player \exists wins v if and only if v		
-Energy parity games:		
$G = (V_{\exists} \cup V_{\forall}, E, \Omega, \boldsymbol{w}), \boldsymbol{w} : E $		
Lemma [Chatterjee, Doye		
Memory of winning histories be		
One-step game function $f_{\sf EPG}$:		
$(X_1,\ldots,X_d)\mapsto (V_\exists\sqcap\diamondsuit)$		
Theorem [Amram et al., 2		
with initial credit c_0 if and only		

 $U_i^{\mu,t} = \bigsqcup \{ u \in B \mid \mu(u) \le \delta(t,i) \}$

d priorities $(2^n)^d \rightarrow 2^n$: $\Diamond X_{\Omega}) \cup (V_{\forall} \cap \Box X_{\Omega})$.996]: $\in \mathsf{NFP} f_{\mathsf{PG}}.$

 $ightarrow \mathbb{Z}$

en, 2012]:ounded by $c = n \cdot d \cdot w_{\max}$ $(\mathbf{c}^n)^d \to \mathbf{c}^n$: $(V_{\forall} \sqcap \Box_E X_{\Omega}) \sqcup (V_{\forall} \sqcap \Box_E X_{\Omega})$ **2020**]: Player \exists wins vy if $(\mathsf{NFP} f_{\mathsf{EPG}})(v) \leq c_0$.

-Stochastic parity games:

 $G = (V_{\exists} \cup V_{\forall} \cup V_{p}, E, \Omega), E[V_{p}] \subseteq \mathsf{Dist}(V)$

Lemma [Chatterjee, Henzinger, 2008]: Approximation of values bound λ exponential in n.

 $f_{\mathsf{EPG}}:$ $(\boldsymbol{\lambda}^n)^k \to \boldsymbol{\lambda}^n$ $(X_1, \ldots, X_k) \mapsto (V_{\exists} \sqcap \diamondsuit X_{\Omega}) \sqcup (V_{\forall} \sqcap \square X_{\Omega})$ Theorem [Chatterjee, Henzinger, 2008]: Player ∃ wins v with probability $\geq p_0$ iff $(\mathsf{NFP} f_{\mathsf{SPG}})(v) \geq p_0$.

-Mean pay-off parity games and weighted parity games: by reduction to energy parity games

Summary of Results

Progress measure algorithm recovers known complexities:

type of gam

par energy part mean pay-off pari

If $d \leq \log n$, NFP f can be computed with polynomially many iterations of f.

Further applications in graded μ -calculus, (two-valued) probablistic μ -calculus, alternating-time μ -calculus, latticed μ -calculi

–Implementation of generic fixpoint solver underway -Identify further examples (e.g. Streett games?)

Further Information

-Extended version of TACAS 2021 paper: https://arxiv.org/abs/1907.07020 -25-minute talk at TACAS 2021:

nes	game solving	model checking
ity	QP	QP
ity	pseudo-QP	QP in c
ity	pseudo-QP	2

Future Work

```
Video: https://www8.cs.fau.de/ext/daniel/qpfp.mp4
Slides: https://www8.cs.fau.de/ext/daniel/tacas21-qpfp.pdf
```