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Coalgebraic One-Step Satisfiability

Set-endofunctor T , set Λ of (unary) modal operators.

For each ♥ ∈ Λ, assume T -predicate lifting, that is, family

([[♥]]X : P(X )→ P(TX ))X∈Set

of functions, satisfying a naturality requirement.

Given set A, put Λ(A) = {♥a | ♥ ∈ Λ, a ∈ A}

One-step satisfiability problem

Let v ⊆ Λ(A) and U ⊆ P(A) with a 6= b whenever ♥1a,♥2b ∈ v . Put

[[v ]]1 =
⋂
♥a∈v

[[♥]]U{u ∈ U | a ∈ u}

One-step satisfiability problem: Do we have T (U) ∩ [[v ]]1 6= ∅ ?

Denote time to solve problem by t(|v |, |U|) with |v | ≤ |A|, |U| ≤ 2|A|.
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Coalgebraic One-Step Satisfiability, example

Basic modal logic: T = P, Λ = {♦,�},

[[♦]]X (A) = {B ∈ P(X ) | A ∩ B 6= ∅}
[[�]]X (A) = {B ∈ P(X ) | B ⊆ A}

Example

A = {b, c , d}, v = {♦b,♦c ,�d} ⊆ Λ(A), U = {x , y} ⊆ P(A),

x = {b, d}, y = {c , d}

Do we have P(U) ∩ [[v ]]1 6= ∅ ?

In general: t(|v |, |U|) ∈ O(|v |2 · |U|), i.e. problem is in P.
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Coalgebraic One-Step Satisfiability, example ctd.

Graded modal logic: bag functor T = B, B(X ) = {θ : X → N ∪∞},
Λ = {〈k〉, [k] | k ∈ N}, predicate liftings

[[〈k〉]]X (A) = {θ ∈ B(X ) | θ(A) > k}
[[[k]]]X (A) = {θ ∈ B(X ) | θ(X \ A) ≤ k},

where θ(A) =
∑

a∈A θ(a).

Example

A = {b, c , d}, v = {〈2〉b, 〈1〉c , [1]d} ⊆ Λ(A), U = {x , y , z} ⊆ P(A),

x = {b, d}, y = {c}, z = {b}

Do we have B(U) ∩ [[v ]]1 6= ∅ ?

In general: t(|v |, |U|) ∈ O((2b + 2)|v |) where b is maximal grade in v ,

i.e. problem is in P [Kupferman, Sattler, Vardi, 2002].
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The Coalgebraic µ-Calculus [Cirstea et al., 2009]

Assume set V of fixpoint variables.

Syntax:

φ, ψ := > | ⊥ | φ ∧ ψ | φ ∨ ψ | X | ♥φ | µX .φ | νX .φ ♥ ∈ Λ,X ∈ V

Assume monotonicity of predicate liftings (A ⊆ B ⇒ [[♥]]A ⊆ [[♥]]B).

Semantics:

Models: T -Coalgebras (W , ξ : W → TW ), extension of formulas:

[[X ]]σ = σ(X ) [[♥φ]]σ = ξ−1[[[♥]]W [[φ]]σ]

[[µX . φ]]σ = LFP([[φ]]Xσ ) [[νX . φ]]σ = GFP([[φ]]Xσ )

where σ : V→ P(W ), where [[φ]]Xσ (A) = [[φ]]σ[X 7→A] for A ⊆W and

where (σ[X 7→ A])(X ) = A, (σ[X 7→ A])(Y ) = σ(Y ) for X 6= Y .

Observe: ξ(x) ∈ TW ∩
⋂

♥ψ∈l(x)

[[♥]]W [[ψ]] where l(x) = {♥ψ | x ∈ [[♥ψ]]}.
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Main Result

Theorem

If the one-step satisfiability problem for a coalgebraic logic is in P, then

the satisfiability problem of the µ-calculus over this logic is in

ExpTime.
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Some Complexity Results on Satisfiability

Previous work in the coalgebraic setting:

– [Cirstea et al. 2009]: Relying on suitable sets of one-step rules

– [Fontaine, Leal, Venema, 2010]: One-step satisfiability games

µ-calculus one-step rules one-step games here

standard ExpTime 2-ExpTime ExpTime

alternating-time ExpTime 2-ExpTime ExpTime

probabilistic ExpTime 2-ExpTime ExpTime

graded – 2-ExpTime ExpTime

Presburger – 2-ExpTime ExpTime

probabilistic with polynomials – 2-ExpTime ExpTime

. . . . . . . . . . . .
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New examples

The Presburger µ-calculus

T = B, Λ = {La1,...,am,b,Ma1,...,am,b | m, a1, . . . am, b ∈ N},

[[La1,...,am,b]]X (A1, . . . ,Am) = {θ ∈ G(X ) |
∑

1≤i≤m
ai · θ(Ai ) > b}

[[Ma1,...,am,b]]X (A1, . . . ,Am) = {θ ∈ G(X ) |
∑

1≤i≤m
ai · θ(X \ Ai ) ≤ b}

The probabilistic µ-calculus with polynomial inequalities

T = D, Λ = {Lp,b,Mp,b | b,m ∈ N, p ∈ Q>0[X1, . . . ,Xm]},

[[Lp,b]]X (A1, . . . ,Am) = {d ∈ D(X ) | p(d(A1), . . . , d(Am)) > b}
[[Mp,b]]X (A1, . . . ,Am) = {d ∈ D(X ) | p(d(X \ A1), . . . , d(X \ Am)) ≤ b}

Both one-step satisfiability problems are in P [Kupke, Pattinson,

Schröder, 2015].
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Corollary

The satisfiability problems of the following µ-calculi are in ExpTime:

– the relational µ-calculus (T = P),

– the alternating-time µ-calculus (concurrent game frame functor),

– with graded transition systems as models (T = B):

• the graded µ-calculus,

• the Presburger µ-calculus,

• the graded µ-calculus with polynomial inequalities

– with Markov chains as models (T = D):

• the (two-valued) probabilistic µ-calculus,

• the (two-valued) probabilistic µ-calculus with polynomial inequalities
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Tracking Automata

Fix target formula χ, let F denote the Fischer-Ladner closure of χ.

Definition

Put selections = P(Λ(F)), Σ = selections ∪ (F× {0, 1}). Tracking

automaton for χ is nondeterministic parity automaton

Aχ = (F,Σ,∆, χ, α). Transition relation: for ρ ∈ selections,

∆(ψ, ρ) = {ψ1 ∈ F | ψ ∈ ρ ∩ Λ({ψ1})} and for (φ, b) ∈ F× {0, 1},

∆(ψ, (φ, b)) ={φb | ψ = φ = φ1 ∨ φ2}∪
{φi | ψ = φ = φ1 ∧ φ2, i ∈ {0, 1}}∪
{φ1[X 7→ ηX .φ1] | ψ = φ = ηX .φ1}

Priority function α assigns even numbers to least fixpoints, odd

numbers to greatest fixpoints, according to alternation depth.
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Tracking automaton Aχ accepts words that encode bad branches, i.e.

those on which some least fixpoint is unfolded indefinitely; put

L(Aχ) =: BadBranch.

Determinize Aχ (e.g. through Büchi automata, using Safra/Piterman

method) and complement it. Obtain deterministic parity automaton

Bχ = (D,Σ, δ, q0, β) with

L(Bχ) = L(Aχ) = BadBranch =: GoodBranch,

with |D| ≤ O(((nk)!)2) where n := |χ| and k is alternation depth of χ

and with j := 2nk priorities. Have labeling function l : D → P(F). For

v ∈ prestates, fix non-modal ψv ∈ l(v).
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Propagation

One-step propagation

For sets G ⊆ D and X = X1, . . . ,Xj ⊆ G j , we put

f (X) ={v ∈ prestates | ∃b ∈ {0, 1}. δ(v , (ψv , b)) ∈ Xβ(v ,(ψv ,b))}∪

{v ∈ states | T (
⋃

1≤i≤j
Xi (v)) ∩ [[l(v)]]1 6= ∅}

g(X) ={v ∈ prestates | ∀b ∈ {0, 1}. δ(v , (ψv , b)) /∈ Xβ(v ,(ψv ,b))}∪

{v ∈ states | T (
⋃

1≤i≤j
Xi (v)) ∩ [[l(v)]]1 = ∅},

where β(v , (ψv , b)) abbreviates β(v , (ψv , b), δ(v , (ψv , b))) and where

Xi (v) = {l(u) ∈ Xi | ∃σ ∈ selections. δ(v , σ) = {u}, β(v , σ, u) = i}.

Propagation for states is an instance of the one-step satisfiability problem.
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Propagation, ctd.

Propagation

Given set G ⊆ D, put

EG = ηjXj . . . . η2X2.η1X1.f (X) AG = ηjXj . . . η2X2.η1X1.g(X),

where X = X1, . . . ,Xj for Xi ⊆ G , where ηi = µ for odd i , ηi = ν for

even i and where η = µ if η = ν and η = ν if η = µ.
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Algorithm (global caching)

Input: Formula χ. Initialize U = {v0} and G = ∅.

1. Expansion: Choose u ∈ U, remove it from U and add it to G . If u is

a pre-state, then add {δ(u, σ) | σ ∈ {ψu} × {0, 1}} to U. If u is a

state, then add {δ(u, σ) | σ ∈ selections} to U.

2. Optional propagation: Compute EG and/or AG . If v0 ∈ EG , then

return ‘satisfiable‘, if v0 ∈ AG , then return ‘unsatisfiable‘.

3. If U 6= ∅, then continue with step 1.

4. Final propagation: Compute EG . If v0 ∈ EG , then return

‘satisfiable‘, otherwise return ‘unsatisfiable‘.

Lemma

Given a target formula χ with |χ| = n and ad(χ) = k , the algorithm

terminates and runs in time O(((nk)!)4nk · t(n, 2n)).
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Results

Theorem

The algorithm returns ‘satisfiable‘ if and only if χ is satisfiable.

Corollary

Satisfiable coalgebraic µ-calculus formulas have models of size

O(((nk)!)2). In all our examples, the branching degree in models is

polynomial in n (polysize one-step model property).
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Satisfiability games [Fontaine, Leal, Venema, 2010]

Let the branching degree in models be polynomial.

Small satisfiability games

Put Y = {U ⊆ selections | |U| is polynomial in n}. Small satisfiability

game for χ: parity game (V ,E , γ) with V = D ∪ D × Y ,

E (d) = {δ(d , (ψd , b)) | b ∈ {0, 1}} for pre-states d ∈ D

E (d) = {(d ,U) | U ∈ Y } for states d ∈ D

E (d ,U) = {δ(d , ρ) | ρ ∈ U} for (d ,U) ∈ D × Y

and

γ(d , δ(d , (ψd , b))) = β(d , (ψd , b), δ(d , (ψd , b)))

γ(d , (d ,U)) = 0

γ((d ,U), δ(d , ρ)) = β(d , ρ, δ(d , ρ))

D. Hausmann – Optimal Satisfiability Checking for the Coalgebraic µ-Calculus 15



Satisfiability games, ctd.

Theorem

Player Eloise wins the small satisfiability game for χ if and only if χ is

satisfiable.

In contrast to [Fontaine, Leal, Venema, 2010], the games have size

|V | ∈ 2O(p(n)) where p is some polynomial.

Corollary

Deciding the winner of small satisfiability games is in ExpTime.

However, to obtain small satisfiability games, we require polynomial

branching which has to be shown independently, e.g. by our new

one-step satisfiability method.
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Conclusion

Results:

– Satisfiability of a coalgebraic µ-calculus is in ExpTime if the

one-step satisfiability problem of the base logic is in P. One-step

rules no longer required.

– All currently known one-step satisfiability problems are in P.

In particular, we cover graded and probabilistic µ-calculi with

polynomial inequalities.

– Bound on model size O(((nk)!)2) for all coalgebraic µ-calculi.

Future:

– More involved examples?

– Satisfiability checking for the hybrid coalgebraic µ-calculus.
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