Quasipolynomial Computation of Nested Fixpoints

Daniel Hausmann and Lutz Schröder Erlangen, Oberseminar – October 29 2019

Chair for Theoretical Computer Science Friedrich-Alexander Universität Erlangen-Nürnberg, Germany

Why Nested Fixpoints?

- Model checking for the μ -calculus = solving parity games.
- Satisfiability checking for the μ -calculus by solving parity games.
- Winning regions of parity games are nested fixpoints.
- Model checking and satisfiability checking for generalized μ-calculi (graded, probabilistic, alternating-time) by nested fixpoints.
- ► Synthesis for linear-time logics (e.g. LTL).
- Computing generalized fair bisimulations.
- Type checking for inductive-coinductive types.

Why Nested Fixpoints?

- Model checking for the μ -calculus = solving parity games.
- Satisfiability checking for the μ -calculus by solving parity games.
- ► Winning regions of parity games are nested fixpoints.
- Model checking and satisfiability checking for generalized μ-calculi (graded, probabilistic, alternating-time) by nested fixpoints.
- Synthesis for linear-time logics (e.g. LTL).
- Computing generalized fair bisimulations.
- Type checking for inductive-coinductive types.

We show:

- Nested fixpoints stabilize after quasipolynomially many iterations.
- The problem of computing nested fixpoints is in $NP \cap CO-NP$.
- Zielonka's algorithm can be adapted to compute nested fixpoints.

Function $\alpha : \mathcal{P}(U)^{k+1} \to \mathcal{P}(U)$ is monotone if for all $U_i \subseteq V_i$, $0 \le i \le k$,

$$\alpha(U_0,\ldots,U_k)\subseteq\alpha(V_0,\ldots,V_k)$$

Extremal fixpoints, systems of fixpoint equations

Let $f : \mathcal{P}(U) \to \mathcal{P}(U)$, $f_i : \mathcal{P}(U)^{k+1} \to \mathcal{P}(U)$, $0 \le i \le k$ be monotone.

$$\mathsf{LFP} f = \bigcap \{ Z \subseteq U \mid f(Z) \subseteq Z \}$$
$$\mathsf{GFP} f = \bigcup \{ Z \subseteq U \mid Z \subseteq f(Z) \}$$

System \overline{f} of fixpoint equations:

 $X_i =_{\eta_i} f_i(X_0, \dots, X_k) \qquad 0 \le i \le k, \eta_i \in \{\mathsf{LFP}, \mathsf{GFP}\}$

Parity game $(V = V_{\exists} \cup V_{\forall}, E \subseteq V \times V, \Omega)$ with priorities 0 to k. Define:

$$\Omega_i = \{ v \in V \mid \Omega(v) = i \}$$

$$\diamond U = \{ v \in V \mid E(v) \cap U \neq \emptyset \}$$

$$\Box U = \{ v \in V \mid E(v) \subseteq U \}$$

 $\alpha_{\mathsf{PG}}(X_1,\ldots,X_k) = (V_{\exists} \cap (\bigcup_{0 \le i \le k} \Omega_i \cap \Diamond X_i)) \cup (V_{\forall} \cap (\bigcup_{0 \le i \le k} \Omega_i \cap \Box X_i))$

Theorem (e.g. [Dawar, Grädel, 2008], [Bruse, Falk, Lange, 2014])

$$\mathsf{win}_\exists = \llbracket X_k \rrbracket_{\alpha_{\mathsf{PG}}}$$

where

$$X_0 =_{\mathsf{GFP}} \alpha_{\mathsf{PG}}(X_0, \dots, X_k) \qquad X_i =_{\eta_i} X_{i-1}, i > 0$$

Fixpoint Parity Game for \overline{f}

Parity game (V, E, Ω) , nodes: $V = (U \times [k]) \cup \mathcal{P}(U)^k$

node	priority	owner	moves to
$(u,j) \in U$	j	Ξ	$\{\mathbf{U}\in\mathcal{P}(U)^k\mid u\in f_j(\mathbf{U})\}$
U	0	\forall	$\{(v,i) \mid v \in U_i\}$

where
$$\mathbf{U} = (U_0, \dots, U_k) \in \mathcal{P}(U)^k$$
.

Theorem [König et al. 2019]

Eloise wins node (u, i) if and only if $u \in \llbracket X_i \rrbracket_{\overline{f}}$.

Problem: exponential size

- still useful for showing history-freeness for nested fixpoints.

History-free witnesses

Even graph $S \subseteq (U \times [k]) \times [k] \times (U \times [k])$ s.t. for all $(u, j) \in \pi_1[S]$,

 $u \in f_j(S_0(u,j),\ldots,S_k(u,j)),$

where $S_i(u,j) = \{(w,i) \mid ((u,j), i, (w,i)) \in S\}.$

Note: $|S| \in \mathcal{O}(|U|^2)$

Lemma

There is history-free witness S s.t. $(u, j) \in \pi_1[S]$ if and only if $u \in \llbracket X_j \rrbracket_{\overline{f}}$.

Theorem

If all functions f_i can be computed in polynomial time, the problem of solving \overline{f} is in NP \cap co-NP.

Proof: Each state (u, i) is contained in $[X_i]$ or in solution of dual nested fixpoint, hence containment in NP suffices. Guess *polynomial*-sized history-free witness containing (u, i). Verify evenness and compatibility with functions f_i in polynomial time.

Parity Games in Quasipolynomial Time [Calude et al., 2017]

Idea: Annotate nodes with quasipolynomial histories ("statistics")

$$\overline{o} = (o_{\lceil \log n \rceil + 1}, \dots, o_0) \qquad 1 \le o_i \le k$$

Define
$$\overline{o}@i = (o'_{\lceil \log n \rceil + 1}, \dots, o'_0)$$
 as follows:
• *i* even: pick greatest *j* s.t. $i > o_j > 0$. If no such *j* exists, then $j = *$.
• *i* odd: pick greatest *j* s.t.
a) $i > o_j > 0$ or
b) o_j even for all $j' < j$, $o_{j'}$ odd (and if $o_j > 0$, $i < o_j$).
• If $j = *$, then $\overline{o}@i = \overline{o}$. Otherwise, $o'_{j'} = o_{j'}$ for $j' > j$, $o'_j = i$ and $o'_{j'} = 0$ for $j' < j$.

Move from (v, \overline{o}) to $(w, \overline{o}@\Omega(w))$ if move from v to w exists in original game. Solve safety game of quasipolynomial size $n \cdot k^{\lceil \log n \rceil + 2}$.

Use Calude et al.'s quasipolynomial histories to compute nested fixpoint:

Put hi = { $(o_{\lceil \log n \rceil + 1}, \dots, o_0) \mid 1 \le o_i \le k$ } having $|hi| \le k^{\lceil \log n \rceil + 2}$ and define $\gamma : \mathcal{P}(U \times [k] \times hi) \to \mathcal{P}(U \times [k] \times hi)$ by

$$\gamma(Y) = \{ (v, i, \overline{o}) \in U \times [k] \times \mathsf{hi} \mid v \in f(Y_0^{\overline{o}}, \dots, Y_k^{\overline{o}}) \}$$

where

$$Y_j^{\overline{o}} = \begin{cases} \emptyset & \text{leftmost digit in } \overline{o}@j \text{ is not } 0\\ \{u \in U \mid (u, j, \overline{o}@j) \in Y\} & \text{otherwise.} \end{cases}$$

Theorem

$$\llbracket X_k \rrbracket_f = \pi_1 \llbracket Y_0 \rrbracket_\gamma]$$
, where $Y_0 =_{\mathsf{GFP}} \gamma(Y_0)$.

Labelled graph: $G = (W, \delta), \ \delta \subseteq W \times [k] \times W$

Definition - **Universal Graphs** Homomorphism from $G = (W, \delta)$ to $G' = (W', \delta')$: $\Phi : W \to W'$ s.t.

for all $(v, p, w) \in \delta$, we have $(\Phi(v), p, \Phi(w)) \in \delta'$.

(n, k)-universal graph S: even labelled graph s.t. for all even labelled graphs G with $|G| \le n$, there is homomorphism from G to S.

Theorem [Czerwiński, Daviaud, Fijalkow, Jurdziński, Lazić, Parys, 19]

There is a deterministic (n, k)-universal graph of size $n^{\log k + O(1)}$. Every (n, k)-universal graph has size at least $n^{\log \frac{k}{\log n} - 1}$. Fix deterministic ((n(k+1), k+1)-universal graph $S = (W, \delta)$.

Definition - Product fixpoint Define $g : \mathcal{P}(U \times [k] \times W) \rightarrow \mathcal{P}(U \times [k] \times W)$ by $g(X) = \{(v, p, q) \in U \times [k] \times W \mid v \in f_p(X_0^q, \dots, X_k^q)\}$

where

$$X_i^q = \{ u \in U \mid (u, i, \delta((q, p), i)) \in X \}.$$

 $Y_0 =_{\text{GFP}} g(Y_0)$ is product fixpoint of f and S.

Theorem

For $0 \le i \le k$, we have $u \in \llbracket X_i \rrbracket_{\overline{f}}$ if and only if $(u, i) \in \pi_1[\llbracket Y_0 \rrbracket_g]$.

Zielonka's Algorithm for Solving Parity Games

Define

$$\operatorname{Attr}_{\exists}^{\operatorname{PG}}(G,F) = \mu X.G \cap (F \cup \alpha_{\operatorname{PG}}(X,\ldots,X))$$

$$\operatorname{Attr}_{\forall}^{\operatorname{PG}}(G,F) = \mu X.G \cap (F \cup \overline{\alpha_{\operatorname{PG}}}(X,\ldots,X))$$

Algorithm: Solve parity game (G, E, Ω) [Zielonka]

1: procedure $SOLVE_{\exists}(G, i)$

2:
$$N_i := \{v \in G \mid \Omega(v) = i\};$$

3:
$$H := G \setminus \operatorname{Attr}_{\exists}^{\operatorname{PG}}(G, N_i);$$

4:
$$W_{\forall} := \mathrm{SOLVE}_{\forall}(H, i-1);$$

5:
$$G := G \setminus \operatorname{Attr}_{\forall}^{\operatorname{PG}}(G, W_{\forall});$$

6: **if**
$$W_{\forall} \neq \emptyset$$
 then GOTO 2:

7: **else** RETURN G.

⊳ *i* even

▷ maximal priority nodes

 \triangleright exclude Eloise-attractor of N_i

▷ solve smaller game

 \triangleright remove Abelard-attractor of W_\forall

Zielonka's Algorithm for Computing Nested Fixpoints

Define

$$\operatorname{Attr}_{\exists}(G,F) = \mu X.G \cap (F \cup f(X,\ldots,X))$$

$$\operatorname{Attr}_{\forall}(G,F) = \mu X.G \cap (F \cup \overline{f}(X,\ldots,X))$$

Algorithm: Compute nested fixpoint

1: procedure $SOLVE_{\exists}(G, i)$

2:
$$N_i := \{v \in G \mid \Omega(v) = i\};$$

3:
$$H := G \setminus \operatorname{Attr}_{\exists}(G, N_i);$$

4:
$$W_{\forall} := \mathrm{SOLVE}_{\forall}(H, i-1);$$

5:
$$G := G \setminus \operatorname{Attr}_{\forall}(G, W_{\forall});$$

6: **if**
$$W_{\forall} \neq \emptyset$$
 then GOTO 2:

7: **else** RETURN G.

⊳ *i* even

b maximal priority nodes

 \triangleright exclude Eloise-attractor of N_i

compute smaller fixpoint

 \triangleright remove Abelard-attractor of W_\forall

A system of equations:

$$\begin{aligned} X_i =_{\mathsf{LFP}} X_{i-1} & i > 1, i \text{ odd} \\ X_i =_{\mathsf{GFP}} X_{i-1} & i \text{ even} \\ X_1 =_{\mathsf{GFP}} f(X_1, \dots, X_k) \end{aligned}$$

A second system of equations:

$$\begin{aligned} Y_i =_{\mathsf{LFP}} \left(\Omega_{>}(i) \cup f(Y_i, \dots, Y_i) \cup Y_{i-1} \right) \cap \left(\Omega_{\leq}(i) \cup Y_{i+1} \right) & i \text{ odd} \\ Y_i =_{\mathsf{GFP}} \left(\Omega_{\leq}(i) \cap f(Y_i, \dots, Y_i) \cap Y_{i-1} \right) \cup \left(\Omega_{>}(i) \cap Y_{i+1} \right) & i \text{ even} \end{aligned}$$

Theorem:

 $\llbracket X_k \rrbracket = \llbracket Y_k \rrbracket.$

Set \boldsymbol{V} of fixpoint variables, set Λ of modalities, closed under duals.

Syntax: $\phi, \psi := \top \mid \perp \mid \phi \land \psi \mid \phi \lor \psi \mid X \mid \heartsuit \psi \mid \mu X.\psi \mid \nu X.\psi \qquad \heartsuit \in \Lambda, X \in \mathbf{V}$

Set-endofunctor T, predicate lifting¹ for $\heartsuit \in \Lambda$: natural transformation $\llbracket \heartsuit \rrbracket : \mathcal{Q} \to \mathcal{Q} \circ T^{op}$

E.g. for $T = \mathcal{P}$,

 $\llbracket \diamondsuit \rrbracket(A) = \{ B \in \mathcal{P}(C) \mid B \cap A \neq \emptyset \}$ $\llbracket \Box \rrbracket(A) = \{ B \in \mathcal{P}(C) \mid B \subseteq A \}$

¹[Pattinson, 2001]

Assume monotonicity of predicate liftings $(A \subseteq B \Rightarrow \llbracket \heartsuit \rrbracket A \subseteq \llbracket \heartsuit \rrbracket B)$

Semantics:

Models: *T*-coalgebras ($C, \xi : C \rightarrow TC$), extension of formulas:

$$\llbracket X \rrbracket_{\sigma} = \sigma(X) \qquad \llbracket \heartsuit \psi \rrbracket_{\sigma} = \xi^{-1}[\llbracket \heartsuit \rrbracket_{\sigma} \psi \rrbracket_{\sigma}]$$
$$\llbracket \mu X. \psi \rrbracket_{\sigma} = \mathsf{LFP}(\llbracket \psi \rrbracket_{\sigma}^{X}) \qquad \llbracket \nu X. \psi \rrbracket_{\sigma} = \mathsf{GFP}(\llbracket \psi \rrbracket_{\sigma}^{X})$$

where $\sigma : \mathbf{V} \to \mathcal{P}(C)$, where $\llbracket \psi \rrbracket_{\sigma}^{X}(A) = \llbracket \psi \rrbracket_{\sigma[X \mapsto A]}$ for $A \subseteq C$ and where $(\sigma[X \mapsto A])(X) = A$, $(\sigma[X \mapsto A])(Y) = \sigma(Y)$ for $X \neq Y$.

- $T = \mathcal{P}$: transition systems $(C, \xi : C \to \mathcal{P}(C))$
 - modalities: \Diamond, \Box
 - standard $\mu\text{-calculus, e.g.}~\mu X.~\psi \lor \Diamond X$
- $T = \mathcal{B}$ (bag functor): graded transition systems $(C, \xi : C \rightarrow \mathcal{B}(C))$
 - modalities: $\langle g
 angle$, [g], $g \in \mathbb{N}$
 - graded μ -calculus², e.g. $\mu X. \ \psi \lor \langle 1 \rangle X$
- $T = \mathcal{G}$: concurrent game frames
 - Set N of agents, modalities $[D], \langle D \rangle, D \subseteq N$
 - alternating-time μ -calculus³, e.g. $\nu X. \ \psi \wedge [D]X$
- $T = \mathcal{D}$: Markov chains
 - modalities $\langle p
 angle$,[p], $p \in \mathbb{Q} \cap [0,1]$
 - (two-valued) probabilistic μ -calculus, e.g. $u X. \psi \wedge \langle 0.5
 angle X$

²[Kupferman et al.,2002]

³[Alur et al., 2002]

Reduce model checking [H,Schröder,CONCUR 2019] and satisfiability checking [H,Schröder,FoSSaCS 2019] for the coalgebraic μ-calculus to computing nested fixpoints.

Corollary

Model checking for coalgebraic μ -calculi is in QP and in NP \cap CO-NP.

Corollary

Satisfiability checking for coalgebraic μ -calculi can be done in time $\mathcal{O}(2^{nk \log n})$ (down from $\mathcal{O}(2^{n^{2}k^{2} \log n})$).

Definition - **Coalgebraic parity game:** T-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$. Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t. for all $d \in D$, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$. **Definition** - **Coalgebraic parity game:** *T*-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$. Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t. for all $d \in D$, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

e.g.

- $T = \mathcal{P}$: parity game for T is graph $(C, \xi : C \to \mathcal{P}(C))$ with priority map Ω and node ownership map $m : C \to \{\diamondsuit, \Box\}$.

Definition - Coalgebraic parity game: *T*-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$. Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t. for all $d \in D$, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

e.g.

- $T = \mathcal{P}$: parity game for T is graph $(C, \xi : C \to \mathcal{P}(C))$ with priority map Ω and node ownership map $m : C \to \{\diamondsuit, \Box\}$.
- $T = \mathcal{D}$: parity game for T is Markov chain $(C, \xi : C \to \mathcal{D}(C))$ with priority map Ω and map $m : C \to \{\langle p \rangle, [p] \mid p \in \mathbb{Q} \cap [0, 1]\}$.

Coalgebraic Parity Games, examples

Coalgebraic Parity Games, examples, strategies

Winning regions in coalgebraic parity games are nested fixpoints:

Given game $(\mathcal{C},\xi,m,\Omega)$, define $f:\mathcal{P}(\mathcal{C})^k \to \mathcal{P}(\mathcal{C})$ by

$$f(X_0,\ldots,X_k) = \{ v \mid \exists i, \heartsuit \in \Lambda. \ m(v) = \heartsuit, \Omega(v) = i \text{ and } \xi(v) \in \llbracket \heartsuit \rrbracket X_i \}$$

Winning regions in coalgebraic parity games are nested fixpoints:

Given game (C, ξ, m, Ω) , define $f : \mathcal{P}(C)^k \to \mathcal{P}(C)$ by

$$f(X_0,\ldots,X_k) = \{ v \mid \exists i, \heartsuit \in \Lambda. \ m(v) = \heartsuit, \Omega(v) = i \text{ and } \xi(v) \in \llbracket \heartsuit \rrbracket X_i \}$$

Theorem [H,Schröder,CONCUR 2019]:

Player Eloise wins u in coalgebraic parity game if and only if $u \in \llbracket X_k \rrbracket_f$.

Coalgebraic μ -calculus model checking = solving coalgebraic parity games. Enables on-the-fly model checking: Start with initial node, expand nodes step by step, compute $[X_k]_f$ at any point (solving a partial game).

Conclusion

Results:

- Computing nested fixpoints by
 - (fixpoint iteration),
 - Calude et al.'s quasipolynomial algorithm
 - universal graphs
 - Zielonka's algorithm
- Computing nested fixpoints also is in $NP \cap CO-NP$.
- Reduction of satisfiability checking and model checking for the coalgebraic μ -calculus to computing nested fixpoints.

Future work:

- Computing fair bisimulations as nested fixpoints.
- Type checking for inductive-coinductive types by computing nested fixpoints.

R. Alur, T. Henzinger, and O. Kupferman.
 Alternating-time temporal logic.
 J. ACM, 49:672–713, 2002.
 F. Bruse, M. Falk, and M. Lange.
 The fixpoint-iteration algorithm for parity games.
 In Games, Automata, Logics and Formal Verification, GandALF

2014, volume 161 of EPTCS, pages 116-130, 2014.

C. S. Calude, S. Jain, B. Khoussainov, W. Li, and F. Stephan.
 Deciding parity games in quasipolynomial time.
 In *Theory of Computing, STOC 2017*, pages 252–263. ACM, 2017.

C. Cîrstea, C. Kupke, and D. Pattinson.
 EXPTIME tableaux for the coalgebraic μ-calculus.
 Log. Meth. Comput. Sci., 7, 2011.

A. Dawar and E. Grädel.

The descriptive complexity of parity games. In *Computer Science Logic, CSL 2008*, volume 5213 of *LNCS*, pages 354–368. Springer, 2008.

D. Pattinson.

Expressivity Results in the Modal Logic of Coalgebras. PhD thesis, Universität München, 2001.