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Why Nested Fixpoints?

I Model checking for the µ-calculus = solving parity games.

I Satisfiability checking for the µ-calculus by solving parity games.

I Winning regions of parity games are nested fixpoints.

I Model checking and satisfiability checking for generalized µ-calculi

(graded, probabilistic, alternating-time) by nested fixpoints.

I Synthesis for linear-time logics (e.g. LTL).

I Computing generalized fair bisimulations.

I Type checking for inductive-coinductive types.

We show:

I Nested fixpoints stabilize after quasipolynomially many iterations.

I The problem of computing nested fixpoints is in NP ∩ co-NP.

I Zielonka’s algorithm can be adapted to compute nested fixpoints.
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Fixpoints of Set-Functions

Function α : P(U)k+1 → P(U) is monotone if for all Ui ⊆ Vi , 0 ≤ i ≤ k,

α(U0, . . . ,Uk) ⊆ α(V0, . . . ,Vk)

Extremal fixpoints, systems of fixpoint equations

Let f : P(U)→ P(U), fi : P(U)k+1 → P(U), 0 ≤ i ≤ k be monotone.

LFP f =
⋂
{Z ⊆ U | f (Z ) ⊆ Z}

GFP f =
⋃
{Z ⊆ U | Z ⊆ f (Z )}

System f of fixpoint equations:

Xi =ηi fi (X0, . . . ,Xk) 0 ≤ i ≤ k , ηi ∈ {LFP,GFP}
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Nested Fixpoints and Parity Games

Parity game (V = V∃ ∪· V∀,E ⊆ V × V ,Ω) with priorities 0 to k. Define:

Ωi ={v ∈ V | Ω(v) = i}
3U ={v ∈ V | E (v) ∩ U 6= ∅}
2U ={v ∈ V | E (v) ⊆ U}

αPG(X1, . . . ,Xk) = (V∃ ∩ (
⋃

0≤i≤k

Ωi ∩3Xi )) ∪ (V∀ ∩ (
⋃

0≤i≤k

Ωi ∩2Xi ))

Theorem (e.g. [Dawar,Grädel,2008],[Bruse,Falk,Lange,2014])

win∃ = [[Xk ]]αPG

where

X0 =GFP αPG(X0, . . . ,Xk) Xi =ηi Xi−1, i > 0
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A Tool: Fixpoint Parity Games (Venema, König et al.)

Fixpoint Parity Game for f

Parity game (V ,E ,Ω), nodes: V = (U × [k]) ∪ P(U)k

node priority owner moves to

(u, j) ∈ U j ∃ {U ∈ P(U)k | u ∈ fj(U)}
U 0 ∀ {(v , i) | v ∈ Ui}

where U = (U0, . . . ,Uk) ∈ P(U)k .

Theorem [König et al. 2019]

Eloise wins node (u, i) if and only if u ∈ [[Xi ]]f .

Problem: exponential size

- still useful for showing history-freeness for nested fixpoints.
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History-freeness for Nested Fixpoints

History-free witnesses

Even graph S ⊆ (U × [k])× [k]× (U × [k]) s.t. for all (u, j) ∈ π1[S ],

u ∈ fj(S0(u, j), . . . ,Sk(u, j)),

where Si (u, j) = {(w , i) | ((u, j), i , (w , i)) ∈ S}.

Note: |S | ∈ O(|U|2)

Lemma

There is history-free witness S s.t. (u, j) ∈ π1[S ] if and only if u ∈ [[Xj ]]f .
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Containment in NP ∩ co-NP

Theorem

If all functions fi can be computed in polynomial time, the problem of

solving f is in NP ∩ co-NP.

Proof: Each state (u, i) is contained in [[Xi ]] or in solution of dual nested

fixpoint, hence containment in NP suffices. Guess polynomial-sized

history-free witness containing (u, i). Verify evenness and compatibility

with functions fi in polynomial time.
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Parity Games in Quasipolynomial Time [Calude et al.,2017]

Idea: Annotate nodes with quasipolynomial histories (“statistics”)

o = (odlog ne+1, . . . , o0) 1 ≤ oi ≤ k

Define o@i = (o′dlog ne+1, . . . , o
′
0) as follows:

I i even: pick greatest j s.t. i > oj > 0. If no such j exists, then j = ∗.
I i odd: pick greatest j s.t.

a) i > oj > 0 or

b) oj even for all j ′ < j , oj′ odd (and if oj > 0, i < oj).

I If j = ∗, then o@i = o. Otherwise, o′j′ = oj′ for j ′ > j , o′j = i and

o′j′ = 0 for j ′ < j .

Move from (v , o) to (w , o@Ω(w)) if move from v to w exists in original

game. Solve safety game of quasipolynomial size n · kdlog ne+2.
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Quasipolynomial Approximation

Use Calude et al.’s quasipolynomial histories to compute nested fixpoint:

Put hi = {(odlog ne+1, . . . , o0) | 1 ≤ oi ≤ k} having |hi | ≤ kdlog ne+2 and

define γ : P(U × [k]× hi)→ P(U × [k]× hi) by

γ(Y ) = {(v , i , o) ∈ U × [k]× hi | v ∈ f (Y o
0 , . . . ,Y

o
k )}

where

Y o
j =

{
∅ leftmost digit in o@j is not 0

{u ∈ U | (u, j , o@j) ∈ Y } otherwise.

Theorem

[[Xk ]]f = π1[[[Y0]]γ ], where Y0 =GFP γ(Y0).
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Universal Graphs

Labelled graph: G = (W , δ), δ ⊆W × [k]×W

Definition - Universal Graphs

Homomorphism from G = (W , δ) to G ′ = (W ′, δ′): Φ : W →W ′ s.t.

for all (v , p,w) ∈ δ, we have (Φ(v), p,Φ(w)) ∈ δ′.

(n, k)-universal graph S : even labelled graph s.t. for all even labelled

graphs G with |G | ≤ n, there is homomorphism from G to S .

Theorem [Czerwiński,Daviaud,Fijalkow,Jurdziński,Lazić,Parys,19]

There is a deterministic (n, k)-universal graph of size nlog k+O(1).

Every (n, k)-universal graph has size at least nlog k
log n−1.
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Solving Equation Systems using Universal Graphs

Fix deterministic ((n(k + 1), k + 1)-universal graph S = (W , δ).

Definition - Product fixpoint

Define g : P(U × [k]×W )→ P(U × [k]×W ) by

g(X ) = {(v , p, q) ∈ U × [k]×W | v ∈ fp(X q
0 , . . . ,X

q
k )}

where

X q
i = {u ∈ U | (u, i , δ((q, p), i)) ∈ X}.

Y0 =GFP g(Y0) is product fixpoint of f and S .

Theorem

For 0 ≤ i ≤ k , we have u ∈ [[Xi ]]f if and only if (u, i) ∈ π1[[[Y0]]g ].
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Zielonka’s Algorithm for Solving Parity Games

Define

AttrPG∃ (G ,F ) = µX .G ∩ (F ∪ αPG (X , . . . ,X ))

AttrPG∀ (G ,F ) = µX .G ∩ (F ∪ αPG (X , . . . ,X ))

Algorithm: Solve parity game (G ,E ,Ω) [Zielonka]

1: procedure SOLVE∃(G , i) . i even

2: Ni := {v ∈ G | Ω(v) = i}; . maximal priority nodes

3: H := G \ AttrPG∃ (G ,Ni ); . exclude Eloise-attractor of Ni

4: W∀ :=SOLVE∀(H, i − 1); . solve smaller game

5: G := G \ AttrPG∀ (G ,W∀); . remove Abelard-attractor of W∀
6: if W∀ 6= ∅ then GOTO 2:

7: elseRETURN G.
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Zielonka’s Algorithm for Computing Nested Fixpoints

Define

Attr∃(G ,F ) = µX .G ∩ (F ∪ f (X , . . . ,X ))

Attr∀(G ,F ) = µX .G ∩ (F ∪ f (X , . . . ,X ))

Algorithm: Compute nested fixpoint

1: procedure SOLVE∃(G , i) . i even

2: Ni := {v ∈ G | Ω(v) = i}; . maximal priority nodes

3: H := G \ Attr∃(G ,Ni ); . exclude Eloise-attractor of Ni

4: W∀ :=SOLVE∀(H, i − 1); . compute smaller fixpoint

5: G := G \ Attr∀(G ,W∀); . remove Abelard-attractor of W∀
6: if W∀ 6= ∅ then GOTO 2:

7: elseRETURN G.
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The Fixpoint Law behind Zielonka’s Algorithm

A system of equations:

Xi =LFP Xi−1 i > 1, i odd

Xi =GFP Xi−1 i even

X1 =GFP f (X1, . . . ,Xk)

A second system of equations:

Yi =LFP (Ω>(i) ∪ f (Yi , . . . ,Yi ) ∪ Yi−1) ∩ (Ω≤(i) ∪ Yi+1) i odd

Yi =GFP (Ω≤(i) ∩ f (Yi , . . . ,Yi ) ∩ Yi−1) ∪ (Ω>(i) ∩ Yi+1) i even

Theorem:

[[Xk ]] = [[Yk ]].
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The Coalgebraic µ-Calculus [Ĉırstea et al., 2011]

Set V of fixpoint variables, set Λ of modalities, closed under duals.

Syntax:

φ, ψ := > | ⊥ | φ∧ψ | φ∨ψ | X | ♥ψ | µX .ψ | νX .ψ ♥ ∈ Λ,X ∈ V

Set-endofunctor T , predicate lifting1 for ♥ ∈ Λ: natural transformation

[[♥]] : Q → Q ◦ T op

E.g. for T = P,

[[3]](A) = {B ∈ P(C ) | B ∩ A 6= ∅}
[[2]](A) = {B ∈ P(C ) | B ⊆ A}

1[Pattinson, 2001]

Hausmann, Schröder – Quasipolynomial Computation of Nested Fixpoints 14



The Coalgebraic µ-Calculus [Ĉırstea et al., 2011]

Assume monotonicity of predicate liftings (A ⊆ B ⇒ [[♥]]A ⊆ [[♥]]B)

Semantics:

Models: T -coalgebras (C , ξ : C → TC ), extension of formulas:

[[X ]]σ = σ(X ) [[♥ψ]]σ = ξ−1[[[♥]][[ψ]]σ]

[[µX . ψ]]σ = LFP([[ψ]]Xσ ) [[νX . ψ]]σ = GFP([[ψ]]Xσ )

where σ : V→ P(C), where [[ψ]]Xσ (A) = [[ψ]]σ[X 7→A] for A ⊆ C and where

(σ[X 7→ A])(X ) = A, (σ[X 7→ A])(Y ) = σ(Y ) for X 6= Y .
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Instances of the Coalgebraic µ-Calculus

I T = P: transition systems (C , ξ : C → P(C ))

– modalities: 3,2
– standard µ-calculus, e.g. µX . ψ ∨3X

I T = B (bag functor): graded transition systems (C , ξ : C → B(C ))

– modalities: 〈g〉, [g ], g ∈ N
– graded µ-calculus2, e.g. µX . ψ ∨ 〈1〉X

I T = G: concurrent game frames

– Set N of agents, modalities [D],〈D〉, D ⊆ N

– alternating-time µ-calculus3, e.g. νX . ψ ∧ [D]X

I T = D: Markov chains

– modalities 〈p〉,[p], p ∈ Q ∩ [0, 1]

– (two-valued) probabilistic µ-calculus, e.g. νX . ψ ∧ 〈0.5〉X

2[Kupferman et al.,2002]
3[Alur et al., 2002]
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Recent Results on the Coalgebraic µ-Calculus

I Reduce model checking [H,Schröder,CONCUR 2019] and

satisfiability checking [H,Schröder,FoSSaCS 2019] for the

coalgebraic µ-calculus to computing nested fixpoints.

Corollary

Model checking for coalgebraic µ-calculi is in QP and in NP∩Co-NP.

Corollary

Satisfiability checking for coalgebraic µ-calculi can be done in time

O(2nk log n) (down from O(2n2k2 log n)).
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Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:

T -coalgebra (C , ξ : C → TC ) with mappings Ω : C → N, m : C → Λ.

Eloise wins node c ∈ C if there is even graph (D,R) on C s.t.

for all d ∈ D, ξ(d) ∈ [[m(d)]]R(d).

e.g.

– T = P: parity game for T is graph (C , ξ : C → P(C )) with priority

map Ω and node ownership map m : C → {3,2}.
– T = D: parity game for T is Markov chain (C , ξ : C → D(C )) with

priority map Ω and map m : C → {〈p〉, [p] | p ∈ Q ∩ [0, 1]} .
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Coalgebraic Parity Games, examples

23 1 2
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T = P: standard

1〈1〉 2 [2]

3〈0〉

T = B: graded

2
1

1

21

1〈0.3〉 3 〈0.1〉

4〈0.5〉

T = D: probabilistic
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0.6

0.8

0.21
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Coalgebraic Parity Games, examples, strategies
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Solving Coalgebraic Parity Games

Winning regions in coalgebraic parity games are nested fixpoints:

Given game (C , ξ,m,Ω), define f : P(C )k → P(C ) by

f (X0, . . . ,Xk) ={v | ∃i ,♥ ∈ Λ.m(v) = ♥,Ω(v) = i and ξ(v) ∈ [[♥]]Xi}

Theorem [H,Schröder,CONCUR 2019]:

Player Eloise wins u in coalgebraic parity game if and only if u ∈ [[Xk ]]f .

Coalgebraic µ-calculus model checking = solving coalgebraic parity games.

Enables on-the-fly model checking: Start with initial node, expand nodes

step by step, compute [[Xk ]]f at any point (solving a partial game).
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Conclusion

Results:

– Computing nested fixpoints by

• (fixpoint iteration),

• Calude et al.’s quasipolynomial algorithm

• universal graphs

• Zielonka’s algorithm

– Computing nested fixpoints also is in NP∩Co-NP.

– Reduction of satisfiability checking and model checking for the

coalgebraic µ-calculus to computing nested fixpoints.

Future work:

– Computing fair bisimulations as nested fixpoints.

– Type checking for inductive-coinductive types by computing nested

fixpoints.
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