Harnessing LTL With Freeze Quantification

Daniel Hausmann, Stefan Milius and Lutz Schroder

University Erlangen-Niirnberg, Germany

Oberseminar

4 August 2020

0/20

Model Checking for Data Languages

» Linear-time (e.g. LTL) vs. branching-time (CTL, u-calculus)

Basic linear-time model checking principle:

Transform ¢ to automaton A(yp), check inclusion of model in A(y)

Inclusion checking for “data automata” (infinite alphabet ~~ data):

» Register Automata (RA) (Kaminski et al. 1994) undecidable

» Nondeterministic Orbit-finite Automata (NOFA)
(Neven et al. 2004, Boyariczyk et al. 2014) undecidable

» Variable Automata (Grumberg et al. 2010) undecidable

1/20

Logics with Freeze Quantification

Freeze LTL (Demri, Lazi¢, 2007):
» paths: data words (P1,dy), (P2, d2), ...
» operators | ¢ “d; = 10", T tdp =7

Flat Freeze LTL (Bollig et al. 2019):

> for all subformulae ¢ U ¢2, no freeze operator in ¢

Model Checking for Freeze LTL:
» Freeze LTL over RA (Demri, Lazi¢, 2007) undecidable
» Flat Freeze LTL over OCA (Bollig et al. 2019) NExpPTIME

One-Counter Automata

2/ 20

Model Checking for Bar Strings

(Schroder et al. 2017): Regular bar expressions and Regular
Nondeterministic Nominal Automata (RNNA), using nominal sets

» RNNA inclusion checking is in para-PSPACE
Our aim here: Linear-time fixpoint logic for RNNA

» Introduce alternating nominal automata (ANA)
» Transform formulae to equivalent ANA

» Generalize RNNA inclusion checking to ANA inclusion
checking to obtain decidable model checking

3/20

Nominal Sets

(-sets

G-set for group G: (X, : G x X — X) such that
- (p-xz)=(mp)-x l-z=zx

Forz e X, Y C X, put
fixe ={reG|rm -x=ua} FixY:ﬂeyfixm
xX

x € X has finite support if there is finite set Y C X such that
Fix(Y') C fix(z)

Then let supp(z) denote least supporting set

4 /20

Nominal Sets

(-sets

G-set for group G: (X, : G x X — X) such that
- (p-xz)=(mp)-x l-z=zx

Forz e X, Y C X, put
fixe ={reG|rm -x=ua} FixY:ﬂeyfixm
xX

x € X has finite support if there is finite set Y C X such that
Fix(Y') C fix(z)

Then let supp(z) denote least supporting set
Names, permutations
Fix countable set A of names, G: group of fin. permutations on A

Then (A, : G x A — A) with 7-a = 7(a) is a G-set
4 /20

Nominal Sets, ctd.

Nominal sets
Nominal set X: G-set (X, -) s.t. all x € X have finite support

Abstraction set: [A]X = (A x X)/~ where
(a,x) ~ (b,y) if and only if (ac) - x = (bc) - y for any fresh ¢

(a)x: ~-equivalence class of (a,x)

5 /20

Nominal Sets, ctd.

Nominal sets
Nominal set X: G-set (X, -) s.t. all x € X have finite support

Abstraction set: [A]X = (A x X)/~ where
(a,x) ~ (b,y) if and only if (ac) - x = (bc) - y for any fresh ¢

(a)x: ~-equivalence class of (a,x)

Bar strings
Set of finite bar strings: B = B* where B=AU{|a | a € A}

=, on bar strings: equivalence generated by

wlav =4 w|bu iff (a)v = (b)u in [A]B

5/ 20

RNNA by Example

|a |b

O O O

s() accepts e.g. |alb and |bla but does not accept |a|a

6 /20

A Linear-time Logic for RNNA

Syntax

o, =T |e| | oA |Cap | Qe | X | pX.
(ae A, X €V)

requiring positivity of fixpoint variables

Define =, on formulae, e.g. O‘G(OGT VET) =4 <>|C(<>CT vET)

7/ 20

A Linear-time Logic for RNNA

Syntax

o, =T |e| | oA |Cap | Qe | X | pX.
(ae A, X €V)

requiring positivity of fixpoint variables
Define =, on formulae, e.g. O‘G(OGT VET) =4 <>|C(<>CT vET)

Semantics (attempt)

Interpret formulae over bar strings using o : V — P(B):

[e]o = {e}
[Oaple ={w € B | w=av,v € [¢]s}
[[<>|a(pﬂ0 = {w €B | w = |b%3w- Q\a@ =a O\blb,’v € [wﬂa}

7/ 20

A Linear-time Logic for RNNA, Example

Recall: [Oup]e ={w € B |w=av,v € [¢]s}
[OM@HU = {w €B ‘ w = |b’l),3¢ O\a(p = <>\b¢7U € [[¢]]U}

8 /20

A Linear-time Logic for RNNA, Example

Recall: [Oup]e ={w € B |w=av,v € [¢]s}
[O|a90]]0’ = {w €B ‘ w = |b’l),3¢ O\a(p = <>\b¢7U € [[¢]]U}

Let ¢ = puX.), ¥ = 01a(Oa T V OpX) so that FN(g) = b

8/ 20

A Linear-time Logic for RNNA, Example

Recall: [Oup]e ={w € B |w=av,v € [¢]s}
[O|a90]]0’ = {’LU €B ‘ w = |bv>3¢ O\a(p = <>\b¢7U € [[¢]]U}

Let ¢ = pX. 4, = 014(0aT VI, X) s0 that FN(ip) = b
We have e.g.
> |cc € [¢] since ¥ =4 (0T VX)) and c € [O.T VO, X]

» |clde ¢ [¢] since |de & [O.T vV O X] since ¢ ¢ [¢]

» |cb|dblee € [¢] since |ee € [¢] so that blee € [Cyy],
|dblee € [Q1a(CaT V Upt)], bldblee € [Dp(01a(CaT V Lt))]

8/ 20

Ensuring Monotonicity

Modal operators are not monotone (yet)!

e.g. [bb € [01o(0aT V L)] since b € [0 T V L] but
|bb ¢ [O|a(<>a—|— V OpT)] since VX.O‘G(OQT VOrT) #a <>|bX

9 /20

Ensuring Monotonicity

Modal operators are not monotone (yet)!
e.g. [bb € [01o(0aT V L)] since b € [0 T V L] but
‘bb §§ [O|a(<>a—|— V <>b—|—)]] since VX.O‘G(OQT VOrT) #a <>|bX

!/
o

Stepping stone: alternative semantics [—]/, closed under =,

[0l = {w € B | w =4 [bv, 3. Q00 =a O, v € [¥]5}

9 /20

Ensuring Monotonicity

Modal operators are not monotone (yet)!

e.g. [bb € [01o(0aT V L)] since b € [0 T V L] but
|bb ¢ [O|a(<>a—|— V OpT)] since VX.O‘G(OQT VOrT) #a <>|bX

Stepping stone: alternative semantics [—]., closed under =,

[0l = {w € B | w =4 [bv, 3. Q00 =a O, v € [¥]5}

Then [bb € [014(0aT V L)] since b € [T v L] and
160 € [01a(0aT V OpT)] since [bb =4 [cc, ¢ € [O.T VO T]

9 /20

Ensuring Monotonicity

Modal operators are not monotone (yet)!

e.g. [bb € [01o(0aT V L)] since b € [0 T V L] but
|bb ¢ [O|a(<>a—|— V OpT)] since VX-O\a(OaT VOrT) #a <>|bX

Stepping stone: alternative semantics [—]., closed under =,

[[<>|a§0]]£r - {w €B ’ W =q |bv’3¢ O\a‘p = O\b@»v € [W)]]ir}

Then [bb € [014(0aT V L)] since b € [T v L] and
160 € [01a(0aT V OpT)] since [bb =4 [cc, ¢ € [O.T VO T]

~~ Semantics well-defined but does not match RNNA (yet)!

9 /20

Name Dropping Formulae

Idea: incorporate explicit name “losing” (“forgetting”) in formulae
Abbreviate
choice(S, a, 1) = nd(S\ {a}, 1) V nd(S U {a},)

Put nd(¢) =V gcen(p) NA(S,) where nd(S, ¢) is defined by

nd(S, Oqt)) = {ia(choice(s, a, 1)) ZZE

nd(S, Q1) = Oja(choice(S, a, 1))

plus commutation with non-modal operators

10 / 20

Name dropping formulae, Example

Let o =01, ¥ =Opx, X =0a T VO T

b a

a b a X%N

O _" O—’| O s ‘a /%/\ a’bQT
la

"\ _/
L ¥(a) x(a,
PO\ x(b)
|b
QO
x()
lalbb € [¢] lalbb € [nd(6)]
lalaa ¢ [¢] lalaa € [nd(¢)]

11 /20

Name Dropping Formulae, Results

Lemma
For all formulae ¢, we have [¢]" = [nd(¢)]" = [nd(¢)].

Define degree deg(¢) = max{|FN(¢)| | ¥ is subformula of ¢},
closure cl(¢) (can be seen as syntax graph of)

Lemma
For all formulae ¢ such that deg(y) = k, |cl(¢)| = n, we have

lcl(nd(p))] < 2 1n.

12 /20

Alternating Nominal Automata

For nominal set X, the orbit of z € X is {r -2z | 7 € G} and
S C X isequivariantif r-x € Sforallme G,z € S

13 /20

Alternating Nominal Automata

For nominal set X, the orbit of z € X is {r -2z | 7 € G} and
S C X isequivariantif r-x € Sforallme G,z € S

Definition (Alternating nominal automaton (ANA))

A= (Q3,Qv,—,s, F) with
» orbit-finite nominal set Q) = Q3 LI Qv of states
» equivariant transition relation -=C @ x (BUe¢) x @
P> equivariant set F' of accepting states

b
such that ¢ it ¢ and (a)q' = (b)q" imply ¢ = ¢" (a-invariance)
and such that {(a,q¢") | ¢ = ¢’} and {(a)¢’ | q L q'} are finite.

13 /20

Alternating Nominal Automata, acceptance

Runs of ANA A = (Q3, Qv, —, s, F) are trees labelled with states,
not sequences of states

Definition (Accepting run trees)

A run tree for w € B is accepting if its branching follows — along
w and adheres (5 and @y, and all its leaves have labels from F'.

Definition (Accepted language)
Literal acceptance:

Lo(A) = {w € B | there is an accepting run tree of A for w}
Accepted bar language:

LQ(A) = LO/Ea

14 / 20

Formulae as Automata

Given ¢, define formula automaton A(p) = (Q3, Qv, —, s, F):

> Q= {my | ¢ € cl(p), ™ € G} with obvious kind (Q3 or Qv)
> s=p F={T,~¢}

PAY = ¢ PAY =Y

PV ¢ OV p P

pX. o= ouX. p/X] vX. 05 olvX. ¢/ X]
Oap = ¢ Oa¢p = ¢

Oub B x ()p={x Dubx (a)g=(B)x

Lemma

For monotone ¢, we have L, (A(p)) = [¢].

15 / 20

Formulae as Automata, Example

Let o = OQ1o%, ¥ = pX.x, x =0Upb, 0 = Oa T VX

A(p) - ’k_@mbx

|a € ‘b ; € a
elelolelel
v X X 0 OuT

16 / 20

Model Checking

bar NFA: NFA M with alphabet B; Lo (M) = Lo(M) /=4

Definition (satisfaction over bar NFA)

For monotone ¢,

M = ¢ if and only if Lo (M) C [¢]’

Model checking: Given M and ¢, check whether
La(M) < [¢]'=[nd(¢)]=La(A(nd(¢)))
/ AN

name dropping construction formulae are ANA

17 / 20

Language Inclusion Checking

Given: bar NFA M, ANA A
Nondeterministic Algorithm (check whether L, (M) Z L. (A))

1 Initialize ¢ = g0, ® = {{qp}}-

2 If) € ®, abort. If ¢ is accepting, guess whether word ends
now. If it ends, terminate positively if all I' € ¢ contain
non-accepting state.

3 Guess avand ¢’ s.t. ¢ > ¢/ in M. Put @ := Jpg(succ(T, @),

succ(y, o) = {{{X 95 xin A}} ¢e Qv. Goto 2.

{Ix}¥ = xinA} ¢eQs

18 / 20

Language Inclusion Checking

Given: bar NFA M, ANA A
Nondeterministic Algorithm (check whether L, (M) Z L. (A))

1 Initialize ¢ = g0, ® = {{qp}}-

2 If) € ®, abort. If ¢ is accepting, guess whether word ends
now. If it ends, terminate positively if all I' € ¢ contain
non-accepting state.

3 Guess avand ¢’ s.t. ¢ > ¢/ in M. Put @ := Jpg(succ(T, @),

succ(y, o) = {{{X 95 xin A}} ¢e Qv. Goto 2.

{Ix}¥ = xinA} ¢eQs

Lemma
The inclusion problem is in EXPSPACE.

(complement and nondeterminism do not affect space complexity)
18 / 20

Model Checking and Satisfiability Checking

Ingredients:
» Model checking: Given bar NFA M and ¢, check whether

La(M) C Lo(A(nd(p)))
» Validity checking: Given universal RNNA M+ and ¢, check
Lo(Mt) € La(A(nd(#)))

» We have [cl(nd(p))| < 2F+1n
> Inclusion problem is in EXPSPACE (O(| M| 4 2/c/(nd(@))l))

Corollary

The model checking and validity problems are in 2EXPSPACE
(and in para-EXPSPACE with k as parameter).

19 / 20

Conclusion

Results so far:

» Linear-time logic for finite bar strings
— name-dropping construction on formulae, blow-up: 2**1n

» Alternating nominal automata (ANA), generalizing RNNA

» Name-dropping formulae are ANA

» Model / satisfiability checking over bar NFA is elementary!
(in 2EXPSPACE and para-EXPSPACE)

Future work:

— How about infinite bar strings? (nominal Biichi automata)

— Conjecture: Inclusion checking between ANA is elementary

20 / 20

