Harnessing LTL With Freeze Quantification

<u>Daniel Hausmann</u>, Stefan Milius and Lutz Schröder University Erlangen-Nürnberg, Germany

Oberseminar

4 August 2020

Model Checking for Data Languages

▶ Linear-time (e.g. LTL) vs. branching-time (CTL, μ -calculus)

Basic linear-time model checking principle:

Transform φ to automaton $A(\varphi)$, check inclusion of model in $A(\varphi)$

Inclusion checking for "data automata" (infinite alphabet → data):

- Register Automata (RA) (Kaminski et al. 1994) undecidable
- Nondeterministic Orbit-finite Automata (NOFA) (Neven et al. 2004, Boyańczyk et al. 2014)

undecidable

► Variable Automata (Grumberg et al. 2010)

undecidable

Logics with Freeze Quantification

Freeze LTL (Demri, Lazić, 2007):

- ▶ paths: data words $(P_1, d_1), (P_2, d_2), \ldots$
- operators $\downarrow_r \varphi$: " $d_i \to r$; φ ", \uparrow_r : " $d_i = r$?"

Flat Freeze LTL (Bollig et al. 2019):

• for all subformulae $\phi_1 \cup \phi_2$, no freeze operator in ϕ_1

Model Checking for Freeze LTL:

- ► Freeze LTL over RA (Demri, Lazić, 2007) undecidable
- ► Flat Freeze LTL over OCA (Bollig et al. 2019) NEXPTIME

One-Counter Automata

Model Checking for Bar Strings

(Schröder et al. 2017): Regular bar expressions and Regular Nondeterministic Nominal Automata (RNNA), using nominal sets

► RNNA inclusion checking is in para-PSPACE

Our aim here: Linear-time fixpoint logic for RNNA

- Introduce alternating nominal automata (ANA)
- Transform formulae to equivalent ANA
- Generalize RNNA inclusion checking to ANA inclusion checking to obtain decidable model checking

Nominal Sets

G-sets

G-set for group
$$G$$
: $(X,\cdot:G\times X\to X)$ such that
$$\pi\cdot(\rho\cdot x)=(\pi\rho)\cdot x \qquad \qquad 1\cdot x=x$$

For
$$x \in X$$
, $Y \subseteq X$, put
$$\operatorname{fix} x = \{\pi \in G \mid \pi \cdot x = x\}$$

$$\operatorname{Fix} Y = \bigcap_{x \in Y} \operatorname{fix} x$$

 $x \in X$ has finite support if there is finite set $Y \subseteq X$ such that $\mathrm{Fix}(Y) \subseteq \mathrm{fix}(x)$

Then let supp(x) denote least supporting set

Nominal Sets

G-sets

G-set for group
$$G$$
: $(X,\cdot:G\times X\to X)$ such that
$$\pi\cdot(\rho\cdot x)=(\pi\rho)\cdot x \qquad \qquad 1\cdot x=x$$

For
$$x \in X$$
, $Y \subseteq X$, put
$$\operatorname{fix} x = \{\pi \in G \mid \pi \cdot x = x\}$$

$$\operatorname{Fix} Y = \bigcap_{x \in Y} \operatorname{fix} x$$

 $x \in X$ has finite support if there is finite set $Y \subseteq X$ such that $\operatorname{Fix}(Y) \subseteq \operatorname{fix}(x)$

Then let supp(x) denote least supporting set

Names, permutations

Fix countable set A of names, G: group of fin. permutations on A

Then $(A, \cdot : G \times A \rightarrow A)$ with $\pi \cdot a = \pi(a)$ is a G-set

Nominal Sets, ctd.

Nominal sets

Nominal set X: G-set (X, \cdot) s.t. all $x \in X$ have finite support

Abstraction set: $[A]X = (A \times X)/\sim$ where

 $(a,x) \sim (b,y)$ if and only if $(ac) \cdot x = (bc) \cdot y$ for any fresh c

 $\langle a \rangle x$: \sim -equivalence class of (a,x)

Nominal Sets, ctd.

Nominal sets

Nominal set X: G-set (X, \cdot) s.t. all $x \in X$ have finite support

Abstraction set: $[A]X = (A \times X)/\sim$ where

$$(a,x) \sim (b,y)$$
 if and only if $(ac) \cdot x = (bc) \cdot y$ for any fresh c

 $\langle a \rangle x$: \sim -equivalence class of (a,x)

Bar strings

Set of finite bar strings: $\mathbb{B} = \mathsf{B}^*$ where $\mathsf{B} = \mathsf{A} \cup \{|a \mid a \in \mathsf{A}\}$

 \equiv_{α} on bar strings: equivalence generated by

$$w|av \equiv_{\alpha} w|bu \text{ iff } \langle a\rangle v = \langle b\rangle u \text{ in } [A]\mathbb{B}$$

RNNA by Example

s() accepts e.g. |a|b and |b|a but does not accept |a|a

A Linear-time Logic for RNNA

Syntax

$$\varphi, \psi ::= \top \mid \epsilon \mid \neg \varphi \mid \varphi \wedge \psi \mid \Diamond_{a} \varphi \mid \Diamond_{\mid a} \varphi \mid X \mid \mu X. \varphi$$

$$(a \in \mathsf{A}, X \in \mathsf{V})$$

requiring positivity of fixpoint variables

Define \equiv_{α} on formulae, e.g. $\lozenge_{|a}(\lozenge_{a}\top\vee\Box_{b}\top)\equiv_{\alpha}\lozenge_{|c}(\lozenge_{c}\top\vee\Box_{b}\top)$

A Linear-time Logic for RNNA

Syntax

$$\varphi, \psi ::= \top \mid \epsilon \mid \neg \varphi \mid \varphi \wedge \psi \mid \Diamond_{a} \varphi \mid \Diamond_{\mid a} \varphi \mid X \mid \mu X. \varphi$$

$$(a \in \mathsf{A}, X \in \mathsf{V})$$

requiring positivity of fixpoint variables

Define \equiv_{α} on formulae, e.g. $\lozenge_{|a}(\lozenge_a \top \vee \square_b \top) \equiv_{\alpha} \lozenge_{|c}(\lozenge_c \top \vee \square_b \top)$

Semantics (attempt)

Interpret formulae over bar strings using $\sigma: V \rightharpoonup \mathcal{P}(\mathbb{B})$:

$$\begin{split} & \llbracket \epsilon \rrbracket_{\sigma} = \{ \epsilon \} \\ & \llbracket \lozenge_{a} \varphi \rrbracket_{\sigma} = \{ w \in \mathbb{B} \mid w = av, v \in \llbracket \varphi \rrbracket_{\sigma} \} \\ & \llbracket \lozenge_{|a} \varphi \rrbracket_{\sigma} = \{ w \in \mathbb{B} \mid w = |bv, \exists \psi. \, \lozenge_{|a} \varphi \equiv_{\alpha} \lozenge_{|b} \psi, v \in \llbracket \psi \rrbracket_{\sigma} \} \end{split}$$

A Linear-time Logic for RNNA, Example

$$\begin{split} \text{Recall:} & \ [\![\lozenge_a \varphi]\!]_\sigma = \{ w \in \mathbb{B} \mid w = av, v \in [\![\varphi]\!]_\sigma \} \\ & \ [\![\lozenge_{|a} \varphi]\!]_\sigma = \{ w \in \mathbb{B} \mid w = |bv, \exists \psi. \, \lozenge_{|a} \varphi \equiv_\alpha \lozenge_{|b} \psi, v \in [\![\psi]\!]_\sigma \} \end{split}$$

A Linear-time Logic for RNNA, Example

$$\begin{split} \text{Recall:} & \ \, \llbracket \lozenge_a \varphi \rrbracket_\sigma = \{ w \in \mathbb{B} \mid w = av, v \in \llbracket \varphi \rrbracket_\sigma \} \\ & \ \, \llbracket \lozenge_{|a} \varphi \rrbracket_\sigma = \{ w \in \mathbb{B} \mid w = |bv, \exists \psi. \lozenge_{|a} \varphi \equiv_\alpha \lozenge_{|b} \psi, v \in \llbracket \psi \rrbracket_\sigma \} \end{split}$$
 Let $\varphi = \mu X. \psi, \ \psi = \lozenge_{|a} (\lozenge_a \top \vee \square_b X) \text{ so that } \mathsf{FN}(\varphi) = b$

A Linear-time Logic for RNNA, Example

$$\begin{split} \text{Recall:} & \ \, \llbracket \lozenge_a \varphi \rrbracket_\sigma = \{ w \in \mathbb{B} \mid w = av, v \in \llbracket \varphi \rrbracket_\sigma \} \\ & \ \, \llbracket \lozenge_{|a} \varphi \rrbracket_\sigma = \{ w \in \mathbb{B} \mid w = |bv, \exists \psi. \, \lozenge_{|a} \varphi \equiv_\alpha \lozenge_{|b} \psi, v \in \llbracket \psi \rrbracket_\sigma \} \end{split}$$

Let
$$\varphi=\mu X.\,\psi$$
, $\psi=\lozenge_{|a}(\lozenge_a\top\vee\Box_b X)$ so that $\mathsf{FN}(\varphi)=b$

We have e.g.

- $|cc \in \llbracket \varphi \rrbracket \text{ since } \psi \equiv_{\alpha} \Diamond_{|c}(\Diamond_c \top \vee \Box_b X) \text{ and } c \in \llbracket \Diamond_c \top \vee \Box_b X \rrbracket$
- $ightharpoonup |c|dc \notin \llbracket \varphi \rrbracket$ since $|dc \notin \llbracket \Diamond_c \top \vee \Box_b X \rrbracket$ since $c \notin \llbracket \phi \rrbracket$
- $\begin{array}{l} \blacktriangleright \ |cb|db|ee \in [\![\varphi]\!] \text{ since } |ee \in [\![\psi]\!] \text{ so that } b|ee \in [\![\Box_b\psi]\!], \\ |db|ee \in [\![\Diamond_{|a}(\Diamond_a\top \vee \Box_b\psi)]\!], \ b|db|ee \in [\![\Box_b(\Diamond_{|a}(\Diamond_a\top \vee \Box_b\psi))]\!] \end{array}$

Modal operators are not monotone (yet)!

e.g.
$$|bb \in [\![\lozenge_{|a}(\lozenge_a \top \lor \bot)]\!]$$
 since $b \in [\![\lozenge_b \top \lor \bot]\!]$ but $|bb \notin [\![\lozenge_{|a}(\lozenge_a \top \lor \lozenge_b \top)]\!]$ since $\forall \chi. \lozenge_{|a}(\lozenge_a \top \lor \lozenge_b \top) \not\equiv_{\alpha} \lozenge_{|b} \chi$

Modal operators are not monotone (yet)!

e.g.
$$|bb \in [\![\lozenge_{|a} (\lozenge_a \top \lor \bot)]\!]$$
 since $b \in [\![\lozenge_b \top \lor \bot]\!]$ but $|bb \notin [\![\lozenge_{|a} (\lozenge_a \top \lor \lozenge_b \top)]\!]$ since $\forall \chi. \lozenge_{|a} (\lozenge_a \top \lor \lozenge_b \top) \not\equiv_{\alpha} \lozenge_{|b} \chi$

Stepping stone: alternative semantics $[-]'_{\sigma}$, closed under \equiv_{α}

$$\llbracket \lozenge_{|a} \varphi \rrbracket'_{\sigma} = \{ w \in \mathbb{B} \mid w \equiv_{\alpha} | bv, \exists \psi. \, \lozenge_{|a} \varphi \equiv_{\alpha} \lozenge_{|b} \varphi, v \in \llbracket \psi \rrbracket'_{\sigma} \}$$

Modal operators are not monotone (yet)!

e.g.
$$|bb \in [\![\lozenge]_a(\lozenge_a \top \lor \bot)]\!]$$
 since $b \in [\![\lozenge]_b \top \lor \bot]\!]$ but $|bb \notin [\![\lozenge]_a(\lozenge_a \top \lor \lozenge_b \top)]\!]$ since $\forall \chi. \lozenge_{|a}(\lozenge_a \top \lor \lozenge_b \top) \not\equiv_{\alpha} \lozenge_{|b} \chi$

Stepping stone: alternative semantics $\llbracket - \rrbracket'_\sigma$, closed under \equiv_α

$$\llbracket \lozenge_{|a} \varphi \rrbracket'_{\sigma} = \{ w \in \mathbb{B} \mid w \equiv_{\alpha} | bv, \exists \psi. \, \lozenge_{|a} \varphi \equiv_{\alpha} \lozenge_{|b} \varphi, v \in \llbracket \psi \rrbracket'_{\sigma} \}$$

Then
$$|bb \in \llbracket \lozenge_{|a}(\lozenge_a \top \vee \bot) \rrbracket'$$
 since $b \in \llbracket \lozenge_b \top \vee \bot \rrbracket'$ and $|bb \in \llbracket \lozenge_{|a}(\lozenge_a \top \vee \lozenge_b \top) \rrbracket'$ since $|bb \equiv_\alpha |cc, \ c \in \llbracket \lozenge_c \top \vee \lozenge_b \top \rrbracket'$

Modal operators are not monotone (yet)!

e.g.
$$|bb \in [\![\lozenge]_a(\lozenge_a \top \lor \bot)]\!]$$
 since $b \in [\![\lozenge]_b \top \lor \bot]\!]$ but $|bb \notin [\![\lozenge]_a(\lozenge_a \top \lor \lozenge_b \top)]\!]$ since $\forall \chi. \lozenge_{|a}(\lozenge_a \top \lor \lozenge_b \top) \not\equiv_{\alpha} \lozenge_{|b} \chi$

Stepping stone: alternative semantics $\llbracket - \rrbracket'_{\sigma}$, closed under \equiv_{α}

$$\llbracket \lozenge_{|a} \varphi \rrbracket'_{\sigma} = \{ w \in \mathbb{B} \mid w \equiv_{\alpha} |bv, \exists \psi. \, \lozenge_{|a} \varphi \equiv_{\alpha} \lozenge_{|b} \varphi, v \in \llbracket \psi \rrbracket'_{\sigma} \}$$

Then
$$|bb \in \llbracket \lozenge_{|a}(\lozenge_a \top \vee \bot) \rrbracket'$$
 since $b \in \llbracket \lozenge_b \top \vee \bot \rrbracket'$ and $|bb \in \llbracket \lozenge_{|a}(\lozenge_a \top \vee \lozenge_b \top) \rrbracket'$ since $|bb \equiv_\alpha |cc, \ c \in \llbracket \lozenge_c \top \vee \lozenge_b \top \rrbracket'$

→ Semantics well-defined but does not match RNNA (yet)!

Name Dropping Formulae

Idea: incorporate explicit name "losing" ("forgetting") in formulae

Abbreviate

$$\mathsf{choice}(S, a, \psi) = \mathsf{nd}(S \setminus \{a\}, \psi) \vee \mathsf{nd}(S \cup \{a\}, \psi)$$

Put $\mathrm{nd}(\varphi)=\bigvee_{S\subseteq \mathsf{FN}(\varphi)}\mathrm{nd}(S,\varphi)$ where $\mathrm{nd}(S,\varphi)$ is defined by

$$\operatorname{nd}(S, \lozenge_a \psi) = \begin{cases} \lozenge_a(\operatorname{choice}(S, a, \psi)) & a \in S \\ \bot & a \notin S \end{cases}$$

$$\operatorname{nd}(S, \lozenge_a \psi) = \lozenge_{|a}(\operatorname{choice}(S, a, \psi))$$

plus commutation with non-modal operators

Name dropping formulae, Example

Let
$$\varphi = \Diamond_{|a}\psi$$
, $\psi = \Diamond_{|b}\chi$, $\chi = \Diamond_a \top \vee \Diamond_b \top$

$$|a|bb \in \llbracket \mathsf{nd}(\phi) \rrbracket$$

 $|a|aa \in \llbracket \mathsf{nd}(\phi) \rrbracket$

Name Dropping Formulae, Results

Lemma

For all formulae φ , we have $[\![\varphi]\!]' = [\![\operatorname{nd}(\varphi)]\!]' = [\![\operatorname{nd}(\varphi)]\!]$.

Define degree $\deg(\varphi) = \max\{|\mathsf{FN}(\psi)| \mid \psi \text{ is subformula of } \varphi\}$, closure $\mathsf{cl}(\varphi)$ (can be seen as syntax graph of φ)

Lemma

For all formulae φ such that $\deg(\varphi)=k$, $|\mathrm{cl}(\varphi)|=n$, we have $|\mathrm{cl}(\mathrm{nd}(\varphi))|\leq 2^{k+1}n.$

Alternating Nominal Automata

For nominal set X, the orbit of $x \in X$ is $\{\pi \cdot x \mid \pi \in G\}$ and $S \subseteq X$ is equivariant if $\pi \cdot x \in S$ for all $\pi \in G$, $x \in S$

Alternating Nominal Automata

For nominal set X, the orbit of $x \in X$ is $\{\pi \cdot x \mid \pi \in G\}$ and $S \subseteq X$ is equivariant if $\pi \cdot x \in S$ for all $\pi \in G$, $x \in S$

Definition (Alternating nominal automaton (ANA))

$$A = (Q_\exists, Q_\forall, \rightarrow, s, F)$$
 with

- \blacktriangleright orbit-finite nominal set $Q=Q_\exists \sqcup Q_\forall$ of states
- ▶ equivariant transition relation $\rightarrow \subseteq Q \times (\mathsf{B} \cup \epsilon) \times Q$
- \triangleright equivariant set F of accepting states

such that $q \stackrel{|a}{\to} q'$ and $\langle a \rangle q' = \langle b \rangle q''$ imply $q \stackrel{|b}{\to} q''$ (α -invariance) and such that $\{(a,q') \mid q \stackrel{a}{\to} q'\}$ and $\{\langle a \rangle q' \mid q \stackrel{|a}{\to} q'\}$ are finite.

Alternating Nominal Automata, acceptance

Runs of ANA $A=(Q_\exists,Q_\forall,\rightarrow,s,F)$ are trees labelled with states, not sequences of states

Definition (Accepting run trees)

A run tree for $w \in \mathbb{B}$ is accepting if its branching follows \to along w and adheres Q_{\exists} and Q_{\forall} , and all its leaves have labels from F.

Definition (Accepted language)

Literal acceptance:

$$L_0(A) = \{ w \in \mathbb{B} \mid \text{there is an accepting run tree of } A \text{ for } w \}$$

Accepted bar language:

$$L_{\alpha}(A) = L_0/\equiv_{\alpha}$$

Formulae as Automata

Given φ , define formula automaton $A(\varphi) = (Q_{\exists}, Q_{\forall}, \rightarrow, s, F)$:

- $\qquad \qquad Q = \{\pi\psi \mid \psi \in \mathrm{cl}(\varphi), \pi \in G\} \text{ with obvious kind } (Q_\exists \text{ or } Q_\forall)$
- $ightharpoonup s = \varphi, F = \{\top, \neg \epsilon\}$

$$\phi \wedge \psi \xrightarrow{\epsilon} \phi \qquad \phi \wedge \psi \xrightarrow{\epsilon} \psi$$

$$\phi \vee \psi \xrightarrow{\epsilon} \phi \qquad \phi \vee \psi \xrightarrow{\epsilon} \psi$$

$$\mu X. \phi \xrightarrow{\epsilon} \phi [\mu X. \phi / X] \qquad \nu X. \phi \xrightarrow{\epsilon} \phi [\nu X. \phi / X]$$

$$\Diamond_a \phi \xrightarrow{a} \phi \qquad \Box_a \phi \xrightarrow{a} \phi$$

$$\Diamond_{|a} \phi \xrightarrow{|b} \chi \qquad \langle a \rangle \phi = \langle b \rangle \chi \qquad \Box_{|a} \phi \xrightarrow{|b} \chi \qquad \langle a \rangle \phi = \langle b \rangle \chi$$

Lemma

For monotone φ , we have $L_{\alpha}(A(\varphi)) = [\![\varphi]\!]$.

Formulae as Automata, Example

Let
$$\varphi = \lozenge_{|a}\psi$$
, $\psi = \mu X$. χ , $\chi = \square_{|b}\theta$, $\theta = \lozenge_a \top \vee \square_b X$

Model Checking

bar NFA: NFA M with alphabet B; $L_{\alpha}(M) = L_0(M)/\equiv_{\alpha}$

Definition (satisfaction over bar NFA)

For monotone φ ,

$$M \models \varphi$$
 if and only if $L_{\alpha}(M) \subseteq \llbracket \varphi \rrbracket'$

Model checking: Given M and φ , check whether

$$L_{\alpha}(M)\subseteq [\![\varphi]\!]'_{-}\!=\![\![\operatorname{nd}(\varphi)]\!]=\!\!L_{\alpha}(A(\operatorname{nd}(\varphi)))$$

name dropping construction formulae are ANA

Language Inclusion Checking

Given: bar NFA M, ANA A

Nondeterministic Algorithm (check whether $L_{\alpha}(M) \not\subseteq L_{\alpha}(A)$)

- 1 Initialize $q = q_0$, $\Phi = \{ \{ q'_0 \} \}$.
- 2 If $\emptyset \in \Phi$, abort. If q is accepting, guess whether word ends now. If it ends, terminate positively if all $\Gamma \in \Phi$ contain non-accepting state.
- 3 Guess α and q' s.t. $q \stackrel{\alpha}{\to} q'$ in M. Put $\Phi := \bigcup_{\Gamma \in \Phi} (\operatorname{succ}(\Gamma, \alpha))$, $\operatorname{succ}(\psi, \alpha) = \begin{cases} \{\{\chi \mid \psi \stackrel{\alpha}{\to} \chi \text{ in } A\}\} & \psi \in Q_{\forall} \\ \{\{\chi\} \mid \psi \stackrel{\alpha}{\to} \chi \text{ in } A\} & \psi \in Q_{\exists} \end{cases}$. Goto 2.

Language Inclusion Checking

Given: bar NFA M, ANA A

Nondeterministic Algorithm (check whether $L_{\alpha}(M) \not\subseteq L_{\alpha}(A)$)

- 1 Initialize $q = q_0$, $\Phi = \{ \{ q'_0 \} \}$.
- 2 If $\emptyset \in \Phi$, abort. If q is accepting, guess whether word ends now. If it ends, terminate positively if all $\Gamma \in \Phi$ contain non-accepting state.
- 3 Guess α and q' s.t. $q \stackrel{\alpha}{\to} q'$ in M. Put $\Phi := \bigcup_{\Gamma \in \Phi} (\operatorname{succ}(\Gamma, \alpha))$, $\operatorname{succ}(\psi, \alpha) = \begin{cases} \{\{\chi \mid \psi \stackrel{\alpha}{\to} \chi \text{ in } A\}\} & \psi \in Q_{\forall} \\ \{\{\chi\} \mid \psi \stackrel{\alpha}{\to} \chi \text{ in } A\} & \psi \in Q_{\exists} \end{cases}. \text{ Goto 2.}$

Lemma

The inclusion problem is in ExpSpace.

(complement and nondeterminism do not affect space complexity)

Model Checking and Satisfiability Checking

Ingredients:

lacktriangle Model checking: Given bar NFA M and φ , check whether

$$L_{\alpha}(M) \subseteq L_{\alpha}(A(\mathsf{nd}(\varphi)))$$

lacksquare Validity checking: Given universal RNNA $M_{ op}$ and φ , check

$$L_{\alpha}(M_{\top}) \subseteq L_{\alpha}(A(\mathsf{nd}(\varphi)))$$

- ▶ We have $|\operatorname{cl}(\operatorname{nd}(\varphi))| \le 2^{k+1}n$
- ▶ Inclusion problem is in ExpSpace $(\mathcal{O}(|M| + 2^{|\mathsf{cl}(\mathsf{nd}(\varphi))|}))$

Corollary

The model checking and validity problems are in 2ExpSpace (and in para-ExpSpace with k as parameter).

Conclusion

Results so far:

- ► Linear-time logic for finite bar strings
 - name-dropping construction on formulae, blow-up: $2^{k+1}n$
- ► Alternating nominal automata (ANA), generalizing RNNA
- Name-dropping formulae are ANA
- ► Model / satisfiability checking over bar NFA is elementary! (in 2ExpSpace and para-ExpSpace)

Future work:

- How about infinite bar strings? (nominal Büchi automata)
- Conjecture: Inclusion checking between ANA is elementary