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Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, . . .
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Two-Player Games

Games: algorithmic essence of verification, reasoning, synthesis, . . .
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▶ How to compute winning regions (win∃, win∀)?

▶ How to extract winning strategies?

▶ Reduction of problems to game solving
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Parity Games

Parity Games

G = (V ,E ⊆ V × V ,Ω : V → {1, . . . , 2k})

▶ play: π = v0v1 . . . ∈ V ω with (vi , vi+1) ∈ E for all i ≥ 0

▶ player ∃ wins play π iff max(Inf(Ω[π])) is even
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▶ Parity games are positionally determined

▶ Solving parity games is in QP and in NP ∩ co-NP
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Games and Fixpoint Expressions

fixpoint expressions parity games Emerson-Lei games

fixpoint games

Walukiewicz-formula

LAR

Extremal fixpoints of monotone f : P(U) → P(U) for finite set U:

µX . f (X ) =
⋂

{W ⊆ U | f (W ) ⊆ W } = f |U|(∅)

νX . f (X ) =
⋃

{W ⊆ U | W ⊆ f (W )} = f |U|(U)
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Fixpoint Characterization of Winning, reachability

Reachability game G = (V ,E ⊆ V 2,F ), V = V∃ ∪· V∀

Controllable predecessor function (one-step forcing):

CPre(X ) ={v ∈ V∃ | ∃(v ,w) ∈ E .w ∈ X}∪
{v ∈ V∀ | ∀(v ,w) ∈ E .w ∈ X}

start

win∃ = F ∪ CPre(F ) ∪ CPre(CPre(F )) ∪ . . .

= µX . (F ∪ CPre(X ))
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Fixpoint Characterization of Winning, Büchi

Büchi game: G = (V ,E ⊆ V 2,F ), V = V∃ ∪· V∀

start

win∃ = νX . µY . (F ∩ CPre(X )) ∪ CPre(Y )
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Fixpoint Characterization of Winning, Büchi

Büchi game: G = (V ,E ⊆ V 2,F ), V = V∃ ∪· V∀

start

win∃ = νX . µY . (F ∩ CPre(X )) ∪ CPre(Y ) = Y |V |(V )

Y 1(V ) = µY . (F ∩ CPre(V )) ∪ CPre(Y )

. . .

. . .
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Fixpoint Characterization of Winning, parity

Parity game: G = (V ,E ⊆ V 2,Ω : V → {1, . . . , 2k}), V = V∃ ∪· V∀
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Walukiewicz-formula (writing Ωi = {v ∈ V | Ω(v) = i}):

win∃ = νX2k . µX2k−1. . . . . νX2. µX1.
⋃

1≤i≤2k

Ωi ∩ CPre(Xi )
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Accelerated Game Solution

fixpoint expressions parity games Emerson-Lei games

fixpoint games

Walukiewicz-formula

LAR

▶ Adapt Walukiewicz-formulas to use multi-step attraction (DAttr) in

place of one-step attraction (Cpre)

▶ Shrinks domain of fixpoint computations ; faster game solving
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Accelerated Solution of DAG Parts in Games

n nodes, m non-DAG nodes

v

x y z

v

DAttr

x y z

νX .CPre(X ) νY .DAttr(Y )

n iterations of CPre m iterations of DAttr
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Main Result

Fix parity game G = (V ,E ,Ω : V → {1, . . . , d}) with DAG nodes W

DAG attractor (to Z ⊆ V \W )

Region from where player ∃ can force exiting W to Z :

DAttrW (Z ) = µX .Z ∪ (W ∩ CPre(X ))

m := |V | − |W |

Theorem

G can be solved with O(mlog d) computations of a DAG attractor.

Advantageous if m < log n and DAG attraction can be checked efficiently

D. Hausmann – Accelerated Game Solving 9



Fixpoint of DAG attraction

Replace

νX2k . µX2k−1. . . . . νX2. µX1.
⋃

1≤i≤2k

Ωi ∩ CPre(Xi )

with

νY2k . µY2k−1. . . . . νY2. µY1.DAttrW (Y1, . . . ,Yk)

The former lives over V , the latter over V \W
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Examples

Particularly helpful for games that encode predicate f : 2V → 2V :

assume V∀ = P(V∃) and

▶ ∃ can move from v to U ⊆ V s.t. v ∈ f (U)

▶ ∀ can move from U ⊆ V to u ∈ U

; DAGs of size 2|V |; faster game solving if f can be evaluated efficiently

Examples of games of this shape

▶ Model checking generic µ-calculi [CONCUR 2019, VMCAI 2024]

▶ Satisfiability checking generic µ-calculi [FoSSaCS 2019, CADE 2023]

▶ Baldan, König, Padoan: Solution of fixpoint games [POPL 2018]
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Accelerated Game Solution

fixpoint expressions parity games Emerson-Lei games

fixpoint games

Walukiewicz-formula

LAR

▶ Later-appearance record (LAR) reduction preserves DAG sub-games
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Emerson-Lei Games

Emerson-Lei Games

G = (V ,E ⊆ V × V , col : V → 2C, φ) φ ∈ B(GF(C))

Player ∃ wins play π iff col[π] |= φ

Examples:

C = {f } φ = GF f (Büchi)

C = {p1, . . . , p2k} φ =
∨

i even GF pi ∧
∧

j>i FG¬pj (parity)

C = {e1, f1, . . . , ek , fk} φ =
∨

1≤i≤k GF ei ∧ FG¬fi (Rabin)

C = {r1, g1, . . . , rk , gk} φ =
∧

1≤i≤k GF ri → GF gi (Streett)

Determined, not positional (in general: memory |C |!)
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C = {p1, . . . , p2k} φ =
∨

i even GF pi ∧
∧

j>i FG¬pj (parity)

C = {e1, f1, . . . , ek , fk} φ =
∨

1≤i≤k GF ei ∧ FG¬fi (Rabin)

C = {r1, g1, . . . , rk , gk} φ =
∧

1≤i≤k GF ri → GF gi (Streett)

Determined, not positional (in general: memory |C |!)

D. Hausmann – Accelerated Game Solving 13



LAR Reduction

Later-appearence-record (LAR) reduction: transforms Emerson-Lei game

with d colors to parity game with 2d priorities; blow-up on state space: d!

Theorem

LAR reduction preserves DAG structure.

Fix Emerson-Lei game with d colors, DAG nodes W , m := |V | \ |W |

Corollary

G can be solved with O((m · d!)log d) computations of DAG attractor.
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Summary

Take-away:

– Winning regions in games are fixpoints of one-step forcing function

– Replace one-step forcing function with multi-step DAG attraction

– Method works for parity games, extends to Emerson-Lei games

▶ Assumes given partition into DAG and non-DAG parts

▶ O(nlog d) iterations of one-step attraction vs.

O(mlog d) iterations of DAG attraction

▶ Helps if m < log n and DAG attraction can be computed efficiently
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