Game-Based Local Model Checking for the Coalgebraic μ -Calculus

Daniel Hausmann and Lutz Schröder CONCUR 2019 – August 30 2019

Chair for Theoretical Computer Science Friedrich-Alexander Universität Erlangen-Nürnberg

Model Checking for μ -Calculi

- Model checking for the μ -calculus = solving parity games.
- Coalgebraic μ-calculus [Cîrstea et al., 2011] instantiates to e.g. standard, graded, probabilistic, alternating-time μ-calculi.
- Model checking coalgebraic μ-calculus can be reduced to solving parity games, incurring exponential blowup [Cîrstea et al., 2011].

Model Checking for μ -Calculi

- Model checking for the μ -calculus = solving parity games.
- Coalgebraic μ-calculus [Cîrstea et al., 2011] instantiates to e.g. standard, graded, probabilistic, alternating-time μ-calculi.
- Model checking coalgebraic μ-calculus can be reduced to solving parity games, incurring exponential blowup [Cîrstea et al., 2011].

We show:

- For the monotone, alternating-time and graded (unary coding of grades) μ-calculi, exponential blowup can be avoided.
- Model checking for the coalgebraic μ -calculus is in NP \cap co-NP.
- ► Fixpoint iteration algorithm for parity games can be adapted to solve coalgebraic parity games, yielding bound \$\mathcal{O}(p \cdot n^{\frac{d}{2}})\$.

Model Checking for the μ -Calculus, example

Player Eloise wins node (x, ψ) if and only if ψ is satisfied at x.

Model Checking for the μ -Calculus, example

Player Eloise wins node (x, ψ) if and only if ψ is satisfied at x.

Set \boldsymbol{V} of fixpoint variables, set Λ of modalities, closed under duals.

Syntax: $\phi, \psi := \top \mid \perp \mid \phi \land \psi \mid \phi \lor \psi \mid X \mid \heartsuit \psi \mid \mu X.\psi \mid \nu X.\psi \qquad \heartsuit \in \Lambda, X \in \mathbf{V}$

Set-endofunctor T, predicate lifting¹ for $\heartsuit \in \Lambda$: natural transformation $\llbracket \heartsuit \rrbracket : \mathcal{Q} \to \mathcal{Q} \circ T^{op}$

Assume monotonicity of predicate liftings $(A \subseteq B \Rightarrow \llbracket \heartsuit \rrbracket A \subseteq \llbracket \heartsuit \rrbracket B)$

¹[Pattinson, 2007]

Semantics:

Models: *T*-coalgebras ($C, \xi : C \rightarrow TC$), extension of formulas:

$$\llbracket X \rrbracket_{\sigma} = \sigma(X) \qquad \llbracket \heartsuit \psi \rrbracket_{\sigma} = \xi^{-1} \llbracket \heartsuit \rrbracket \llbracket \psi \rrbracket_{\sigma} \rrbracket$$
$$\llbracket \mu X. \psi \rrbracket_{\sigma} = \mathsf{LFP}(\llbracket \psi \rrbracket_{\sigma}^{X}) \qquad \llbracket \nu X. \psi \rrbracket_{\sigma} = \mathsf{GFP}(\llbracket \psi \rrbracket_{\sigma}^{X})$$

where $\sigma : \mathbf{V} \to \mathcal{P}(C)$, where $\llbracket \psi \rrbracket_{\sigma}^{X}(A) = \llbracket \psi \rrbracket_{\sigma[X \mapsto A]}$ for $A \subseteq C$ and where $(\sigma[X \mapsto A])(X) = A$, $(\sigma[X \mapsto A])(Y) = \sigma(Y)$ for $X \neq Y$.

Hence $x \in \llbracket \heartsuit \psi \rrbracket$ if and only if $\xi(x) \in \llbracket \heartsuit \rrbracket \llbracket \psi \rrbracket$.

- $T = \mathcal{P}$: transition systems $(C, \xi : C \to \mathcal{P}(C))$
 - modalities: \Diamond, \Box
 - standard μ -calculus, e.g. $\mu X. \ \psi \lor \Diamond X$
- $T = \mathcal{B}$ (bag functor): graded transition systems $(C, \xi : C \rightarrow \mathcal{B}(C))$
 - modalities: $\langle g \rangle$, [g], $g \in \mathbb{N}$
 - graded μ -calculus², e.g. $\mu X. \ \psi \lor \langle 1 \rangle X$
- T = G: concurrent game frames
 - Set N of agents, modalities $[D], \langle D \rangle, D \subseteq N$
 - alternating-time μ -calculus³, e.g. $\nu X. \ \psi \wedge [D]X$
- T = D: Markov chains
 - modalities $\langle p \rangle$,[p], $p \in \mathbb{Q} \cap [0,1]$
 - (two-valued) probabilistic μ -calculus, e.g. $\nu X. \ \psi \land \langle 0.5 \rangle X$

²[Kupferman et al.,2002]

³[Alur et al., 2002]

Model Checking for the Coalgebraic μ -Calculus, example

Hausmann, Schröder – Game-Based Local Model Checking for the Coalgebraic μ -Calculus

Model Checking for the Coalgebraic μ -Calculus, example

Hausmann, Schröder – Game-Based Local Model Checking for the Coalgebraic μ -Calculus

Theorem

If modalities for a coalgebraic logic can be evaluated in P, the model checking problem of the μ -calculus over this logic is in NP \cap co-NP.

Proof: Logic is closed under negation, hence containment in NP suffices. Guess *polynomial*-sized witness for Eloise winning exponential-size game; verify witness in polynomial time by checking that all paths are even and that modalities are satisfied within witness.

Faster Model Checking for some Coalgebraic μ -Calculi

For some logics, smaller modal one-step games exist, e.g.

$$(x, \langle 1 \rangle Z)$$

$$\downarrow \exists \qquad \exists$$

$$(\{y\}, Z) \quad (\{x, y\}, Z)$$

$$\downarrow \forall \qquad \forall \qquad \forall$$

$$(y, Z) \qquad (x, Z)$$

$$(y,0,0) \xrightarrow{\exists} (y,2,1) \xrightarrow{\forall} (\bot,2,0)$$

$$\downarrow^{\exists}$$

$$(x,0,0) \xrightarrow{\exists} (x,1,1) \quad (y,Z)$$

$$\downarrow^{\exists} \quad \downarrow^{\forall} \quad \forall$$

$$(\bot,0,0) \quad (\bot,1,0) \quad (x,Z)$$

Faster Model Checking for some Coalgebraic μ -Calculi

For some logics, smaller modal one-step games exist, e.g.

Theorem

The model checking problem of the serial, alternating-time and graded (with grades coded in unary) μ -calculi is in QP.

Theorem

If the modalities of a coalgebraic logic can be evaluated in time p, the model checking problem of the μ -calculus over this logic can be solved in time $\mathcal{O}(p \cdot n^{\frac{d}{2}})$, (d alternation depth, $n = |\chi| \cdot |\mathcal{C}|$).

Proof: By reduction to computing a nested fixpoint.

Corollary

- The model checking problem of the probabilistic μ-calculus can be solved in time O((size(χ))² · n^{d/2+4}).
- The model checking problem of the graded (with grades coded binary) μ-calculus can be solved in time O(size(χ) · n^{d/2+2}).

Definition - **Coalgebraic parity game:** T-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$. Eloise *wins* node $c \in C$ if there is *even* graph (D, R) on C s.t. for all $d \in D$, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$. **Definition** - **Coalgebraic parity game**: *T*-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$.

Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t.

for all $d \in D$, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

e.g.

- $T = \mathcal{P}$: parity game for T is graph $(C, \xi : C \to \mathcal{P}(C))$ with priority map Ω and node ownership map $m : C \to \{\diamondsuit, \Box\}$.

Definition - Coalgebraic parity game:

T-coalgebra $(C, \xi : C \to TC)$ with mappings $\Omega : C \to \mathbb{N}$, $m : C \to \Lambda$.

Eloise wins node $c \in C$ if there is even graph (D, R) on C s.t.

for all $d \in D$, $\xi(d) \in \llbracket m(d) \rrbracket R(d)$.

e.g.

- $T = \mathcal{P}$: parity game for T is graph $(C, \xi : C \to \mathcal{P}(C))$ with priority map Ω and node ownership map $m : C \to \{\diamondsuit, \Box\}$.
- $T = \mathcal{D}$: parity game for T is Markov chain $(C, \xi : C \to \mathcal{D}(C))$ with priority map Ω and map $m : C \to \{\langle p \rangle, [p] \mid p \in \mathbb{Q} \cap [0, 1]\}$.

Coalgebraic Parity Games, examples

Coalgebraic Parity Games, examples, strategies

Solving Coalgebraic Parity Games

Compute winning regions in coalgebraic parity games by fixpoint iteration: Define $f : C \times Cl(\psi)$ by

$$f(X_0, \dots, X_k) = \{ (v, \psi) \in V_{\exists} \mid \exists i. \Omega(v, \psi) = i, E(v, \psi) \cap X_i \neq \emptyset \} \cup$$
$$\{ (v, \psi) \in V_{\forall} \mid \exists i. \Omega(v, \psi) = i, E(v, \psi) \subseteq X_i \} \cup$$
$$\{ (v, \heartsuit \psi) \mid \xi(v) \in \llbracket \heartsuit \rrbracket X_0 \}$$

Put win_∃ =
$$\eta_k X_k . \eta_{k-1} X_{k-1} \eta_0 X_0 . f(X_0, ..., X_k)$$

(η_i = GFP if *i* even, η_i = LFP if *i* odd.)

Solving Coalgebraic Parity Games

Compute winning regions in coalgebraic parity games by fixpoint iteration: Define $f : C \times Cl(\psi)$ by

$$f(X_0, \dots, X_k) = \{ (v, \psi) \in V_{\exists} \mid \exists i. \Omega(v, \psi) = i, E(v, \psi) \cap X_i \neq \emptyset \} \cup \\ \{ (v, \psi) \in V_{\forall} \mid \exists i. \Omega(v, \psi) = i, E(v, \psi) \subseteq X_i \} \cup \\ \{ (v, \heartsuit \psi) \mid \xi(v) \in \llbracket \heartsuit \rrbracket X_0 \}$$

Put win_∃ =
$$\eta_k X_k$$
. $\eta_{k-1} X_{k-1}$ $\eta_0 X_0.f(X_0, \ldots, X_k)$

 $(\eta_i = \mathsf{GFP} \text{ if } i \text{ even}, \eta_i = \mathsf{LFP} \text{ if } i \text{ odd.})$

Theorem:

We have $x \in \llbracket \psi \rrbracket$ if and only if $(x, \psi) \in win_{\exists}$.

Enables local model checking: Start with initial node, expand nodes step by step, compute win_{\exists} (and dual set win_{\forall}) at any point (partial game).

Conclusion

Results:

- Model checking problem of a coalgebraic $\mu\text{-calculus}$ is in $NP\cap \mathrm{co}\text{-}NP$ if modalities can be evaluated in polynomial time.
- For the serial, alternating-time and graded (with grades coded in unary) μ -calculi, model checking is in QP.
- Reduction to coalgebraic parity games; solving these by fixpoint iteration yields time bound $\mathcal{O}(p \cdot n^{\frac{d}{2}})$.
- Implementation as part of COOL⁴ solves coalgebraic parity games.

Current/future work:

- Compute nested fixpoints in quasipolynomial time.⁵
- Use Zielonka's algorithm to compute nested fixpoints.

⁴https://www8.cs.fau.de/research:software:cool ⁵https://arxiv.org/abs/1907.07020

C. Cîrstea, C. Kupke, and D. Pattinson.
 EXPTIME tableaux for the coalgebraic μ-calculus.
 In *Computer Science Logic, CSL 2009*, volume 5771 of *LNCS*, pages 179–193. Springer, 2009.

G. Fontaine, R. A. Leal, and Y. Venema.

Automata for coalgebras: An approach using predicate liftings. In S. Abramsky, C. Gavoille, C. Kirchner, F. Meyer auf der Heide, and P. G. Spirakis, editors, *ICALP (2)*, volume 6199 of *Lecture Notes in Computer Science*. Springer, 2010.

References ii

 D. Hausmann and L. Schröder.
 Global caching for the flat coalgebraic μ-calculus. In *Temporal Representation and Reasoning, TIME 2015*, pages 121–143. IEEE Computer Society, 2015.
 D. Hausmann, L. Schröder, and H.-P. Deifel.
 Permutation games for the weakly aconjunctive μ-calculus.

In Tools and Algorithms for the Construction and Analysis of Systems, TACAS 2018, volume 10205–10206 of LNCS. Springer, to appear.

D. Hausmann, L. Schröder, and C. Egger.

Global caching for the alternation-free coalgebraic μ -calculus. In *Concurrency Theory, CONCUR 2016*, volume 59 of *LIPIcs*, pages 34:1–34:15. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, 2016.

References iii

D. Kozen.

A finite model theorem for the propositional μ**-calculus.** *Studia Logica*, 47:233–241, 1988.

N. Piterman.

From nondeterministic büchi and streett automata to deterministic parity automata.

Logical Methods in Computer Science, 3(3):5, 2007.

🔋 S. Safra.

On the complexity of omega-automata.

In *Foundations of Computer Science, FOCS 1988*, pages 319–327. IEEE Computer Society, 1988.