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Model Checking for µ-Calculi

I Model checking for the µ-calculus = solving parity games.

I Coalgebraic µ-calculus [Ĉırstea et al., 2011] instantiates to e.g.

standard, graded, probabilistic, alternating-time µ-calculi.

I Model checking coalgebraic µ-calculus can be reduced to solving

parity games, incurring exponential blowup [Ĉırstea et al., 2011].

We show:

I For the monotone, alternating-time and graded (unary coding of

grades) µ-calculi, exponential blowup can be avoided.

I Model checking for the coalgebraic µ-calculus is in NP ∩ co-NP.

I Fixpoint iteration algorithm for parity games can be adapted to solve

coalgebraic parity games, yielding bound O(p · n d
2 ).
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Hausmann, Schröder – Game-Based Local Model Checking for the Coalgebraic µ-Calculus 1



Model Checking for the µ-Calculus, example

x¬p y p

ψ := µZ . p ∨2Z

(x , ψ)1 (x , p ∨2Z )

(x , p)(x ,2Z )

(y , ψ)1 (y , p ∨2Z )

(y , p)(y ,2Z )

∃∃∀

∀

∃∃

∀

yields

parity game

Player Eloise wins node (x , ψ) if and only if ψ is satisfied at x .
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The Coalgebraic µ-Calculus [Ĉırstea et al., 2011]

Set V of fixpoint variables, set Λ of modalities, closed under duals.

Syntax:

φ, ψ := > | ⊥ | φ∧ψ | φ∨ψ | X | ♥ψ | µX .ψ | νX .ψ ♥ ∈ Λ,X ∈ V

Set-endofunctor T , predicate lifting1 for ♥ ∈ Λ: natural transformation

[[♥]] : Q → Q ◦ T op

Assume monotonicity of predicate liftings (A ⊆ B ⇒ [[♥]]A ⊆ [[♥]]B)

1[Pattinson, 2007]
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The Coalgebraic µ-Calculus [Ĉırstea et al., 2011]

Semantics:

Models: T-coalgebras (C , ξ : C → TC ), extension of formulas:

[[X ]]σ = σ(X ) [[♥ψ]]σ = ξ−1[[[♥]][[ψ]]σ]

[[µX . ψ]]σ = LFP([[ψ]]Xσ ) [[νX . ψ]]σ = GFP([[ψ]]Xσ )

where σ : V→ P(C), where [[ψ]]Xσ (A) = [[ψ]]σ[X 7→A] for A ⊆ C and where

(σ[X 7→ A])(X ) = A, (σ[X 7→ A])(Y ) = σ(Y ) for X 6= Y .

Hence x ∈ [[♥ψ]] if and only if ξ(x) ∈ [[♥]][[ψ]].
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Instances of the Coalgebraic µ-Calculus

I T = P: transition systems (C , ξ : C → P(C ))

– modalities: 3,2
– standard µ-calculus, e.g. µX . ψ ∨3X

I T = B (bag functor): graded transition systems (C , ξ : C → B(C ))

– modalities: 〈g〉, [g ], g ∈ N
– graded µ-calculus2, e.g. µX . ψ ∨ 〈1〉X

I T = G: concurrent game frames

– Set N of agents, modalities [D],〈D〉, D ⊆ N

– alternating-time µ-calculus3, e.g. νX . ψ ∧ [D]X

I T = D: Markov chains

– modalities 〈p〉,[p], p ∈ Q ∩ [0, 1]

– (two-valued) probabilistic µ-calculus, e.g. νX . ψ ∧ 〈0.5〉X

2[Kupferman et al.,2002]
3[Alur et al., 2002]
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Model Checking for the Coalgebraic µ-Calculus, example
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Model Checking for the Coalgebraic µ-Calculus, example

x¬p y p

ψ := µZ . p ∨ 〈1〉Z

Ĉırstea et al., 2011:

E (v ,♥ψ) = {(U, ψ) | ξ(v) ∈ [[♥]](U)}
E (U, ψ) = {(u, ψ) | u ∈ U}

2
1

2

(x , ψ)1 (x , p ∨ 〈1〉Z )

(x , p)(x , 〈1〉Z )

({x , y},Z ) ({y},Z )

(y , ψ)1 (y , p ∨ 〈1〉Z )

(y , p)(y , 〈1〉Z )

({x},Z )

∃∃

∃ ∃

∀

∀ ∀

∃∃

∃

∀

yields game
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Model Checking for the Coalgebraic µ-Calculus, example

x¬p y p

ψ := µZ . p ∨ 〈1〉Z

Ĉırstea et al., 2011:

E (v ,♥ψ) = {(U, ψ) | ξ(v) ∈ [[♥]](U)}
E (U, ψ) = {(u, ψ) | u ∈ U}

exponentially many nodes! /

2
1

2

(x , ψ)1 (x , p ∨ 〈1〉Z )
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({x , y},Z ) ({y},Z )
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∀

∀ ∀
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∀
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Containment in NP ∩ co-NP

Theorem

If modalities for a coalgebraic logic can be evaluated in P, the model

checking problem of the µ-calculus over this logic is in NP ∩ co-NP.

Proof: Logic is closed under negation, hence containment in NP suffices.

Guess polynomial-sized witness for Eloise winning exponential-size game;

verify witness in polynomial time by checking that all paths are even and

that modalities are satisfied within witness.
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Faster Model Checking for some Coalgebraic µ-Calculi

For some logics, smaller modal one-step games exist, e.g.

(x , 〈1〉Z )

({y},Z ) ({x , y},Z )

(y ,Z ) (x ,Z )

∃ ∃

∀ ∀∀

(y , 0, 0) (y , 2, 1)

(x , 0, 0) (x , 1, 1) (y ,Z )

(⊥, 1, 0)

(⊥, 2, 0)

(⊥, 0, 0) (x ,Z )

∃

∃
∀

∀

∃

∃
∀

∀

Theorem

The model checking problem of the serial, alternating-time and graded

(with grades coded in unary) µ-calculi is in QP.
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Main Result

Theorem

If the modalities of a coalgebraic logic can be evaluated in time p, the

model checking problem of the µ-calculus over this logic can be solved

in time O(p · n d
2 ), (d alternation depth, n = |χ| · |C |).

Proof: By reduction to computing a nested fixpoint.

Corollary

I The model checking problem of the probabilistic µ-calculus can be

solved in time O((size(χ))2 · n d
2+4).

I The model checking problem of the graded (with grades coded

binary) µ-calculus can be solved in time O(size(χ) · n d
2+2).
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Introducing: Coalgebraic Parity Games

Definition - Coalgebraic parity game:

T -coalgebra (C , ξ : C → TC ) with mappings Ω : C → N, m : C → Λ.

Eloise wins node c ∈ C if there is even graph (D,R) on C s.t.

for all d ∈ D, ξ(d) ∈ [[m(d)]]R(d).

e.g.

– T = P: parity game for T is graph (C , ξ : C → P(C )) with priority

map Ω and node ownership map m : C → {3,2}.
– T = D: parity game for T is Markov chain (C , ξ : C → D(C )) with

priority map Ω and map m : C → {〈p〉, [p] | p ∈ Q ∩ [0, 1]} .
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Coalgebraic Parity Games, examples

23 1 2

33

T = P: standard

1〈1〉 2 [2]

3〈0〉

T = B: graded

2
1

1

21

1〈0.3〉 3 〈0.1〉

4〈0.5〉

T = D: probabilistic

0.4
0.6

0.8

0.21
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Coalgebraic Parity Games, examples, strategies

23 1 2

33

T = P: standard

1〈1〉 2 [2]

3〈0〉

T = B: graded

2
1

1

21
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Solving Coalgebraic Parity Games

Compute winning regions in coalgebraic parity games by fixpoint iteration:

Define f : C × Cl(ψ) by

f (X0, . . . ,Xk) ={(v , ψ) ∈ V∃ | ∃i .Ω(v , ψ) = i ,E (v , ψ) ∩ Xi 6= ∅}∪
{(v , ψ) ∈ V∀ | ∃i .Ω(v , ψ) = i ,E (v , ψ) ⊆ Xi}∪
{(v ,♥ψ) | ξ(v) ∈ [[♥]]X0}

Put win∃ = ηkXk . ηk−1Xk−1. . . . η0X0.f (X0, . . . ,Xk)

(ηi = GFP if i even, ηi = LFP if i odd.)

Theorem:

We have x ∈ [[ψ]] if and only if (x , ψ) ∈ win∃.

Enables local model checking: Start with initial node, expand nodes step

by step, compute win∃ (and dual set win∀) at any point (partial game).

Hausmann, Schröder – Game-Based Local Model Checking for the Coalgebraic µ-Calculus 16



Solving Coalgebraic Parity Games

Compute winning regions in coalgebraic parity games by fixpoint iteration:

Define f : C × Cl(ψ) by

f (X0, . . . ,Xk) ={(v , ψ) ∈ V∃ | ∃i .Ω(v , ψ) = i ,E (v , ψ) ∩ Xi 6= ∅}∪
{(v , ψ) ∈ V∀ | ∃i .Ω(v , ψ) = i ,E (v , ψ) ⊆ Xi}∪
{(v ,♥ψ) | ξ(v) ∈ [[♥]]X0}

Put win∃ = ηkXk . ηk−1Xk−1. . . . η0X0.f (X0, . . . ,Xk)

(ηi = GFP if i even, ηi = LFP if i odd.)

Theorem:

We have x ∈ [[ψ]] if and only if (x , ψ) ∈ win∃.

Enables local model checking: Start with initial node, expand nodes step

by step, compute win∃ (and dual set win∀) at any point (partial game).
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Conclusion

Results:

– Model checking problem of a coalgebraic µ-calculus is in

NP ∩ co-NP if modalities can be evaluated in polynomial time.

– For the serial, alternating-time and graded (with grades coded in

unary) µ-calculi, model checking is in QP.

– Reduction to coalgebraic parity games; solving these by fixpoint

iteration yields time bound O(p · n d
2 ).

– Implementation as part of COOL4 solves coalgebraic parity games.

Current/future work:

– Compute nested fixpoints in quasipolynomial time.5

– Use Zielonka’s algorithm to compute nested fixpoints.

4https://www8.cs.fau.de/research:software:cool
5https://arxiv.org/abs/1907.07020
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D. Hausmann, L. Schröder, and H.-P. Deifel.

Permutation games for the weakly aconjunctive µ-calculus.

In Tools and Algorithms for the Construction and Analysis of

Systems, TACAS 2018, volume 10205–10206 of LNCS. Springer, to

appear.

D. Hausmann, L. Schröder, and C. Egger.
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