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Satisfiability Checking for the µ-Calculus

Satisfiability problem of µ-calculus is ExpTime-complete [Kozen, 1983]

Standard approach (satisfiability games):

Input: Fixpoint formula ψ

1. Construct NPA A, tracking formulas through potential models and

accepting bad paths that contain some unsatisfied µ-formula.

2. Determinize, complement A, obtain DPA B accepting good paths.

3. Solve parity game over B, relying on tableau rules.

Player Eloise wins the game if and only if ψ is satisfiable.
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Satisfiability Checking for the Coalgebraic µ-Calculus

Satisfiability problem of µ-calculus is ExpTime-complete [Kozen, 1983]

Our approach (coalgebraic satisfiability games):

Input: Fixpoint formula ψ

1. Construct NPA A, tracking formulas through potential models and

accepting bad paths that contain some unsatisfied µ-formula.

2. Determinize, complement A, obtain DPA B accepting good paths.

3. Solve coalgebraic game over B, relying on one-step satisfiability.

Player Eloise wins the coalgebraic game if and only if ψ is satisfiable.
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Coalgebraic One-Step Satisfiability

Set-endofunctor T , set Λ of (unary) modal operators

T -predicate lifting1 for ♥ ∈ Λ: natural transformation

[[♥]] : Q → Q ◦ T op

Given set V , put Λ(V ) = {♥a | ♥ ∈ Λ, a ∈ V }

One-step satisfiability problem [Schröder, 2007]

Let v ⊆ Λ(V ) and U ⊆ P(V ) with a 6= b whenever ♥1a,♥2b ∈ v . Put

[[v ]]1 =
⋂
♥a∈v

[[♥]]U{u ∈ U | a ∈ u}

One-step satisfiability problem: Do we have T (U) ∩ [[v ]]1 6= ∅ ?

Denote time to solve problem by t(size(v), |V |), having |U| ≤ 2|V |.

1[Pattinson, 2007]
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One-Step Satisfiability, example

Basic modal logic: T = P, Λ = {♦,�}; for sets X , A ⊆ X , put

[[♦]]X (A) = {B ∈ P(X ) | A ∩ B 6= ∅} [[�]]X (A) = {B ∈ P(X ) | B ⊆ A}

Example

Let V = {b, c , d}, U = {{b, d}, {c , d}}

Do we have

P(U) ∩ [[♦]]U{b} ∩ [[♦]]U{c} ∩ [[�]]U{d} 6= ∅ ?

v = {♦b,♦c ,�d}

b, d c , d

In general: t(size(v), |V |) ∈ O(size(v) · 2|V |)
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Hausmann, Schröder – Optimal Satisfiability Checking for Arithmetic µ-Calculi 6



One-Step Satisfiability, example

Basic modal logic: T = P, Λ = {♦,�}; for sets X , A ⊆ X , put

[[♦]]X (A) = {B ∈ P(X ) | A ∩ B 6= ∅} [[�]]X (A) = {B ∈ P(X ) | B ⊆ A}

Example

Let V = {b, c , d}, U = {{b, d}, {c , d}}

Do we have

P(U) ∩ [[♦]]U{b} ∩ [[♦]]U{c} ∩ [[�]]U{d} 6= ∅ ?

v = {♦b,♦c ,�d}X

b, d c , d

In general: t(size(v), |V |) ∈ O(size(v) · 2|V |)
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Coalgebraic One-Step Satisfiability, example ctd.

Graded modal logic: bag functor T (X ) = B(X ) = {θ : X → N}

Λ = {〈k〉, [k] | k ∈ N}. For sets X , A ⊆ X , put θ(A) =
∑

a∈A θ(a) and

[[〈k〉]]X (A) = {θ ∈ B(X ) | θ(A) > k} [[[k]]]X (A) = {θ ∈ B(X ) | θ(X \ A) ≤ k}

Example

Let V = {b, c , d}, U = {{c , d}, {b}, {c}}

Do we have

B(U) ∩ [[〈0〉]]U{b} ∩ [[〈1〉]]U{c} ∩ [[[1]]]U{d}∩ 6= ∅ ?

v = {〈0〉b, 〈1〉c , [1]d}

bc , d c

[Kupferman, Sattler, Vardi, 2002]: t(size(v), |V |) ∈ O((2size(v)+1 + 2)|V |)
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Hausmann, Schröder – Optimal Satisfiability Checking for Arithmetic µ-Calculi 8



Graded One-Step Satisfiability, example

Graded modal logic: bag functor T (X ) = B(X ) = {θ : X → N}

Λ = {〈k〉, [k] | k ∈ N}. For sets X , A ⊆ X , put θ(A) =
∑

a∈A θ(a) and

[[〈k〉]]X (A) = {θ ∈ B(X ) | θ(A) > k} [[[k]]]X (A) = {θ ∈ B(X ) | θ(X \ A) ≤ k}

Example

Let V = {b, c , d}, U = {{c , d}, {b}, {c}}

Do we have

B(U) ∩ [[〈0〉]]U{b} ∩ [[〈1〉]]U{c} ∩ [[[1]]]U{d}∩ 6= ∅ ?

v = {〈0〉b, 〈1〉c , [1]d}

bc , d c

[Kupferman, Sattler, Vardi, 2002]: t(size(v), |V |) ∈ O((2size(v)+1 + 2)|V |)
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The Coalgebraic µ-Calculus [Cirstea et al., 2009]

Assume set V of fixpoint variables

Syntax:

φ, ψ := > | ⊥ | φ∧ψ | φ∨ψ | X | ♥ψ | µX .ψ | νX .ψ ♥ ∈ Λ,X ∈ V

Assume monotonicity of predicate liftings (A ⊆ B ⇒ [[♥]]A ⊆ [[♥]]B)

Semantics:

Models: T -coalgebras (W , ξ : W → TW ), extension of formulas:

[[X ]]σ = σ(X ) [[♥ψ]]σ = ξ−1[[[♥]]W [[ψ]]σ]

[[µX . ψ]]σ = LFP([[ψ]]Xσ ) [[νX . ψ]]σ = GFP([[ψ]]Xσ )

where σ : V→ P(W ), where [[ψ]]Xσ (A) = [[ψ]]σ[X 7→A] for A ⊆W and where

(σ[X 7→ A])(X ) = A, (σ[X 7→ A])(Y ) = σ(Y ) for X 6= Y .

Observe: ξ(x) ∈ TW ∩
⋂

♥ψ∈l(x)

[[♥]]W [[ψ]] where l(x) = {♥ψ | x ∈ [[♥ψ]]}
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Instances of the Coalgebraic µ-Calculus

I Standard µ-calculus: T = P, e.g. µX . ψ ∨ ♦X

t(size(v), |V |) ∈ O(|v |2 · 2|V |)

I Graded µ-calculus: T = B, e.g. µX . ψ ∨ 〈1〉X
t(size(v), |V |) ∈ O((2size(v)+1 + 2)|V |) 2

I Alternating-time µ-calculus: T = G, e.g. νX . ψ ∧ [D]X

t(size(v), |V |) ∈ O(2p(size(v)+|V |)) 3

I (Two-valued) probabilistic µ-calculus: T = D, e.g. νX . ψ ∧ 〈0.5〉X
t(size(v), |V |) ∈ O(2p(size(v)+|V |)) 4

2[Kupferman, Sattler, Vardi, 2002]
3[Cirstea, Kupke, Pattinson, 2009]
4[Cirstea, Kupke, Pattinson, 2009]
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New instances of the Coalgebraic µ-Calculus

Graded µ-calculus with polynomial inequalities

T = B, Λ = {Lp,b,Mp,b | b,m ∈ N, p ∈ N>0[X1, . . . ,Xm]},

[[Lp,b]]X (A1, . . . ,Am) = {θ ∈ G(X ) | p(θ(A1), . . . , θ(Am)) > b}
[[Mp,b]]X (A1, . . . ,Am) = {θ ∈ G(X ) | p(θ(X \ A1), . . . , θ(X \ Am)) ≤ b}

E.g. µY . (ψ ∨ L2X1+(X2)2,2(p ∧ Y , q ∧ Y ))

Probabilistic µ-calculus with polynomial inequalities

T = D, Λ = {Lp,b,Mp,b | b,m ∈ N, p ∈ Q>0[X1, . . . ,Xm]},

[[Lp,b]]X (A1, . . . ,Am) = {d ∈ D(X ) | p(d(A1), . . . , d(Am)) > b}
[[Mp,b]]X (A1, . . . ,Am) = {d ∈ D(X ) | p(d(X \ A1), . . . , d(X \ Am)) ≤ b}

One-step sat. problems can be solved in exponential time [Kupke et al., 2015]
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Main Result

Theorem

If the one-step satisfiability problem for a coalgebraic logic can be

solved in time t(size(v), |V |) exponential in size(v) + |V | for inputs

v ⊆ Λ(V ), U ⊆ P(V ), then the satisfiability problem of the µ-calculus

over this logic is in ExpTime.
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Some Complexity Results on Satisfiability

Previous work in the coalgebraic setting:

– [Cirstea et al. 2009]: Relying on tractable sets of one-step rules

– [Fontaine, Leal, Venema, 2010]: One-step satisfiability games

µ-calculus one-step rules one-step games here

standard (P) ExpTime 2-ExpTime ExpTime

alternating-time (G) ExpTime 2-ExpTime ExpTime

probabilistic (D) ExpTime 2-ExpTime ExpTime

graded (B) – 2-ExpTime ExpTime

graded with polynomials – 2-ExpTime ExpTime

probabilistic with polynomials – 2-ExpTime ExpTime

. . . . . . . . . . . .

[Kupferman, Sattler, Vardi, 2002] for graded µ-calculus: ExpTime
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Tracking Automata

Fix target formula χ, let F denote the Fischer-Ladner closure of χ.

Tracking automaton for χ:

I Nondeterministic parity automaton

I State set F

I Transitions according to syntax graph of χ

I Priorities at edges, according to alternation depth
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Tracking automata

Example

Tracking automaton Aψ for

ψ = AFp = µX . p ∨�X :

AFp

p ∨�AFp

p

�AFp

(∨L)

(µ)

(∨R)

(�)

Non-model for ψ:

¬p

p

(µ)(∨L)  
(µ)(∨R)(�)(µ)(∨L)  
(µ)(∨R)(�)(µ)(∨R)(�). . .
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Tracking automaton Aχ accepts words that encode bad paths on which

some least fixpoint is unfolded indefinitely; put L(Aχ) =: BadPaths.

Determinize Aχ (e.g. through Büchi automata, using Safra/Piterman

method) and complement. Obtain DPA Bχ = (D,Σ, δ, q0, β) with

L(Bχ) = L(Aχ) = BadPaths =: GoodPaths,

and |D| ∈ O(((nk)!)2) where n := |χ| and k is alternation depth of χ

and with j := 2nk priorities. Define labeling function l : D → P(F).

states := {v ∈ D | l(v) ⊆ Λ(F)} prestates := D \ states
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Propagation

Given v ∈ prestates, fix non-modal ψv ∈ l(v).

One-step propagation

For sets X = X1, . . . ,Xj ⊆ D j , put

f (X) ={v ∈ prestates | ∃b ∈ {0, 1}. δ(v , (ψv , b)) ∈ Xβ(v ,(ψv ,b))}∪

{v ∈ states | l(v) is one-step satisfiable in
⋃

1≤i≤j
Xi (v)}

where β(v , (ψv , b)) abbreviates β(v , (ψv , b), δ(v , (ψv , b))) and where

Xi (v) = {l(u) ∈ Xi | ∃σ ∈ selections. (v , σ, u) ∈ δi}.
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Propagation, ctd.

Propagation

Given sets X = X1, . . . ,Xj ⊆ D j , put

E = ηjXj . . . . η2X2.η1X1.f (X) A = ηjXj . . . η2X2.η1X1.f (X),

where ηi = µ for odd i , ηi = ν for even i and where ν = µ and µ = ν.

Computes winning regions of coalgebraic parity game
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Parity games vs. coalgebraic games

Parity game with d priorities

ψ(X) = (∃ ∧ (
∨
i≤d

(Pi ∧ ♦Xi )))∨

(∀ ∧ (
∨
i≤d

(Pi ∧�Xi )))

win∃ = ηdXd . . . . η2X2.η1X1.ψ(X)

win∀ = ηdXd . . . η2X2.η1X1.¬ψ(X)

Coalgebraic game

f (X) ={v ∈ prestates | ∃b ∈ {0, 1}.

δ(v , (ψv , b)) ∈ Xβ(v,(ψv ,b))}∪

{v ∈ states | l(v) is one-step

satisfiable in
⋃

1≤i≤j
Xi (v)}

E = ηjXj . . . . η2X2.η1X1.f (X)

A = ηjXj . . . η2X2.η1X1.f (X)
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Results

Theorem

We have q0 ∈ E if and only if χ is satisfiable.

Lemma

Given target formula χ with |χ| = n and alternation depth k, E can be

computed in time O(((nk)!)4nk · t(size(χ), n)).

Corollary

Satisfiable coalgebraic µ-calculus formulas have models of size

O(((nk)!)2). In all our examples, the branching degree in models is

polynomial in n (polysize one-step model property).
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Conclusion

Results:

– Satisfiability of a coalgebraic µ-calculus is in ExpTime if the

one-step satisfiability problem of the base logic can be solved in

exponential time. One-step tableau rules no longer required.

– Currently known examples of one-step satisfiability problems can be

solved in exponential time. In particular: graded and probabilistic

µ-calculi with polynomial inequalities

– Upper bound O(((nk)!)2) on model size for all coalgebraic µ-calculi

(implicitly also in [Cirstea, Kupke, Pattinson, 2009])

Future:

– Solving coalgebraic games in quasipolynomial time?
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