Permutation Games for the Weakly Aconjunctive μ -Calculus

Daniel Hausmann

Lutz Schröder

Hans-Peter Deifel

hans-peter.deifel@fau.de

University Erlangen-Nürnberg

 \triangleright Published at TACAS 2018

Highlights 2018, 19 September 2018, Berlin, Germany

Constructing satisfiability games for the μ -calculus typically involves determinization of parity automata (**tracking automata**).

Key observation: For **aconjunctive** formulas, tracking of **fixpoints** already is deterministic; easier determinization of tracking automata

Results:

- Concept of limit-deterministic parity automata along with determinization procedure
- ► Asymptotically smaller satisfiability games for aconjunctive formulas
- Implementation of solver for these games, coalgebraic and on-the-fly

Parity automata (PA)

 $\mathcal{A} = (V, \Sigma, \delta, q_0, \alpha)$ with transition relation $\delta \subseteq V \times \Sigma \times V$ and priority function $\alpha : \delta \to \mathbb{N}$. Priorities are assigned to **transitions** rather than states, e.g. [Schewe, Varghese 2014].

Büchi automata are PA with priorities just 1 and 2 ($\delta_1 = \overline{F}$, $\delta_2 = F$).

Limit-deterministic PA

PA \mathcal{A} is **limit-deterministic** (LD) if all its accepting runs are deterministic from some point on.

Büchi automaton is LD iff for all $t \in F$, scc(t) is deterministic.

Theorem [Esparza, Kretínský, Raskin, Sickert, TACAS 2017] LDBA \mathcal{B} of size *n* can be determinized to DPA Det(\mathcal{B}) of size $\mathcal{O}(n!)$ and with L(\mathcal{B}) = L(Det(\mathcal{B})).

Safraless determinization, using permutations of states.

Lemma

LDPA \mathcal{A} of size n with k priorities can be transformed to LDBA Büchi(\mathcal{A}) of size $\mathcal{O}(nk)$ and with L(\mathcal{A}) = L(Büchi(\mathcal{A})).

Corollary

LDPA \mathcal{B} of size *n* with *k* priorities can be determinized to equivalent DPA Det(Büchi(\mathcal{B})) of size $\mathcal{O}((nk)!)$.

This brings the bound down from $\mathcal{O}(((nk)!)^2)$.

The μ -calculus [Kozen, 88]: expressive logic, extending modal logic with fixpoint operators ($\mu X. \psi, \nu X. \psi$); models are standard Kripke structures.

Aconjunctive formulas: in conjunctions $\psi_1 \wedge \psi_2$, at most one ψ_i contains an **active** μ -variable, i.e. a variable that can be transformed to a formula containing a free least fixpoint variable by (repeatedly) replacing variables with their binding fixpoint.

E.g. $\nu X.\mu Y.(\Diamond X \land \Box Y)$ is a conjunctive while $\mu X.\nu Y.(\Diamond X \land \Box Y)$ is not. Weak aconjunctivity [Walukiewicz, 2000] relaxes this. **Tracking automaton** \mathcal{A}_{ψ} for formula ψ : NPA that tracks single formulas through potential models, accepting **bad branches**, i.e. infinite paths on which some least fixpoint is unfolded infinitely often.

Priorities according to alternation depth of passed fixpoint variables.

Lemma

If ψ is weakly a conjunctive, then the tracking automaton \mathcal{A}_ψ is limit-deterministic.

D. Hausmann – Permutation Games for the Weakly Aconjunctive μ -Calculus

Permutation games for the weakly aconjunctive $\mu\text{-calculus}$ Input: Weakly aconjunctive formula ψ

- 1. Tracking automaton \mathcal{A}_{ψ} is **LDPA** of size $n = |\psi|$ with $k = \operatorname{ad}(\psi)$ priorities, recognizes **bad branches** in pre-tableaux for ψ .
- 2. Determinize A_{ψ} using permutation method, obtaining equivalent DPA \mathcal{B}_{ψ} of size $\mathcal{O}((nk)!)$ and with $\mathcal{O}(nk)$ priorities.
- 3. Complement DPA \mathcal{B}_{ψ} , obtaining DPA \mathcal{C}_{ψ} of same size.
- 4. Solve resulting satisfiability game on states of C_{ψ} in time $\mathcal{O}((nk)!^{nk})$.

Build the game step by step and solve it **on-the-fly**, using the fixpoint iteration algorithm for parity games, see e.g. [Bruse, Falk, Lange, 2014].

Permutation games work for the **coalgebraic** μ -calculus (covering e.g. alternating-time and probabilistic fixpoint logics, and game logic).

They have been implemented as part of the **Coalgebraic Ontology Logic Reasoner** (COOL):

https://www8.cs.fau.de/research:software:cool

We compare COOL with MLSolver (which supports the full μ -calculus) on some series of aconjunctive formulas.

Benchmarking

"Parity automata with *n* priorities can be transformed to equivalent parity automata with 3 priorities." (valid)

Benchmarking

early-ac(n, 4, 2) (unsatisfiable)

D. Hausmann – Permutation Games for the Weakly Aconjunctive μ -Calculus