NP Reasoning in the Monotone μ -Calculus (IJCAR 2020)

Daniel Hausmann and Lutz Schröder

University Erlangen-Nuremberg, Germany

Highlights 2020

16 September 2020

Complexities of satisfiability checking for some modal logics:

► K

- modal μ -calculus / CTL
- monotone modal logic
- ▶ monotone μ -calculus

PSPACE EXPTIME NP [Vardi, 1989] ? Complexities of satisfiability checking for some modal logics:

K PSPACE
modal μ-calculus / CTL EXPTIME
monotone modal logic NP [Vardi, 1989]
alternation-free monotone μ-calculus NP [here]

Standard modal formulae, interpreted over neighbourhood structures $M=(W\!,N\!,I)$ where

 $N : \operatorname{Act} \times W \to \mathcal{P}(\mathcal{P}(W))$ $I : \operatorname{At} \to \mathcal{P}(W)$

$$\llbracket [a]\phi \rrbracket = \{ w \in W \mid \forall S \in N(a, w). S \cap \llbracket \phi \rrbracket \neq \emptyset \} \\ \llbracket \langle a \rangle \phi \rrbracket = \{ w \in W \mid \exists S \in N(a, w). S \subseteq \llbracket \phi \rrbracket \}$$

 $x \in [\![\langle a \rangle p]\!]$

$x \in [\![a](p \vee q)]\!]$

Cannot express e.g. "p holds in every successor state" "p holds in at least one successor state"

Main Theorem

The satisfiability problem for the alternation-free monotone $\mu\text{-calculus}$ is NP-complete.

Proof sketch:				
ϕ is satisfiable	\Leftrightarrow	there is tableau for ϕ	\Leftrightarrow	Eloise wins satisfiability game for ϕ

Satisfiability games: Two-player Büchi games with polynomial number of Eloise-nodes \rightsquigarrow NP-algorithm for solving the games

Readings:

Epistemic Logic

 $\langle a \rangle \phi$ – "Agent a knows ϕ "

Concurrent PDL (CPDL), Peleg (1987)

 $\langle \alpha \rangle \phi$ – "There is execution of program α in parallel, nondeterministic system s.t. all end states satisfy ϕ "

 $\langle \alpha \rangle \phi$ – "Player Angel has strategy to achieve ϕ in game α "

Results:

Satisfiability checking for

- CPDL
- alternation-free Game Logic
- alternation-free monotone μ -calculus (with global axioms)

is only NP-complete!

▶ Polynomial bound on model size $(\mathcal{O}(n^2))$

Future work:

– How about full monotone $\mu\text{-calculus}$ / Game Logic?